
CHAPTER 1

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find:
a) a unit vector in the direction of −M + 2N.

−M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)

Thus

a =
(26, 10, 4)
|(26, 10, 4)| = (0.92, 0.36, 0.14)

b) the magnitude of 5ax + N − 3M:

(5, 0, 0) + (8, 7,−2) − (−30, 12,−24) = (43,−5, 22), and |(43,−5, 22)| = 48.6.

c) |M||2N|(M + N):

|(−10, 4,−8)||(16, 14,−4)|(−2, 11,−10) = (13.4)(21.6)(−2, 11,−10)

= (−580.5, 3193,−2902)

1.2. The three vertices of a triangle are located at A(−1, 2, 5), B(−4,−2,−3), and C(1, 3,−2).
a) Find the length of the perimeter of the triangle: Begin with AB = (−3,−4,−8), BC = (5, 5, 1),

and CA = (−2,−1, 7). Then the perimeter will be � = |AB|+ |BC|+ |CA| =
√

9 + 16 + 64 +√
25 + 25 + 1 +

√
4 + 1 + 49 = 23.9.

b) Find a unit vector that is directed from the midpoint of the side AB to the midpoint of side
BC: The vector from the origin to the midpoint of AB is MAB = 1

2 (A+B) = 1
2 (−5ax +2az).

The vector from the origin to the midpoint of BC is MBC = 1
2 (B + C) = 1

2 (−3ax + ay − 5az).
The vector from midpoint to midpoint is now MAB − MBC = 1

2 (−2ax − ay + 7az). The unit
vector is therefore

aMM =
MAB − MBC

|MAB − MBC |
=

(−2ax − ay + 7az)
7.35

= −0.27ax − 0.14ay + 0.95az

where factors of 1/2 have cancelled.

c) Show that this unit vector multiplied by a scalar is equal to the vector from A to C and that the
unit vector is therefore parallel to AC. First we find AC = 2ax + ay − 7az, which we recognize
as −7.35aMM . The vectors are thus parallel (but oppositely-directed).

1.3. The vector from the origin to the point A is given as (6,−2,−4), and the unit vector directed from
the origin toward point B is (2,−2, 1)/3. If points A and B are ten units apart, find the coordinates
of point B.

With A = (6,−2,−4) and B = 1
3B(2,−2, 1), we use the fact that |B − A| = 10, or

|(6 − 2
3B)ax − (2 − 2

3B)ay − (4 + 1
3B)az| = 10

Expanding, obtain
36 − 8B + 4

9B2 + 4 − 8
3B + 4

9B2 + 16 + 8
3B + 1

9B2 = 100

or B2 − 8B − 44 = 0. Thus B = 8±
√

64−176
2 = 11.75 (taking positive option) and so

B =
2
3
(11.75)ax − 2

3
(11.75)ay +

1
3
(11.75)az = 7.83ax − 7.83ay + 3.92az
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1.4. A circle, centered at the origin with a radius of 2 units, lies in the xy plane. Determine the unit
vector in rectangular components that lies in the xy plane, is tangent to the circle at (

√
3, 1, 0), and

is in the general direction of increasing values of y:

A unit vector tangent to this circle in the general increasing y direction is t = aφ. Its x and y
components are tx = aφ · ax = − sinφ, and ty = aφ · ay = cos φ. At the point (

√
3, 1), φ = 30◦,

and so t = − sin 30◦ax + cos 30◦ay = 0.5(−ax +
√

3ay).

1.5. A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z2az. Given two points, P (1, 2,−1)
and Q(−2, 1, 3), find:
a) G at P : G(1, 2,−1) = (48, 36, 18)

b) a unit vector in the direction of G at Q: G(−2, 1, 3) = (−48, 72, 162), so

aG =
(−48, 72, 162)
|(−48, 72, 162)| = (−0.26, 0.39, 0.88)

c) a unit vector directed from Q toward P :

aQP =
P − Q
|P − Q| =

(3,−1, 4)√
26

= (0.59, 0.20,−0.78)

d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z2)|, or
10 = |(4xy, 2x2 + 4, 3z2)|, so the equation is

100 = 16x2y2 + 4x4 + 16x2 + 16 + 9z4

1.6. If a is a unit vector in a given direction, B is a scalar constant, and r = xax + yay + zaz, describe
the surface r · a = B. What is the relation between the the unit vector a and the scalar B to this
surface? (HINT: Consider first a simple example with a = ax and B = 1, and then consider any a
and B.):

We could consider a general unit vector, a = A1ax + A2ay + A3az, where A2
1 + A2

2 + A2
3 = 1.

Then r · a = A1x + A2y + A3z = f(x, y, z) = B. This is the equation of a planar surface, where
f = B. The relation of a to the surface becomes clear in the special case in which a = ax. We
obtain r · a = f(x) = x = B, where it is evident that a is a unit normal vector to the surface
(as a look ahead (Chapter 4), note that taking the gradient of f gives a).

1.7. Given the vector field E = 4zy2 cos 2xax + 2zy sin 2xay + y2 sin 2xaz for the region |x|, |y|, and |z|
less than 2, find:

a) the surfaces on which Ey = 0. With Ey = 2zy sin 2x = 0, the surfaces are 1) the plane z = 0,
with |x| < 2, |y| < 2; 2) the plane y = 0, with |x| < 2, |z| < 2; 3) the plane x = 0, with |y| < 2,
|z| < 2; 4) the plane x = π/2, with |y| < 2, |z| < 2.

b) the region in which Ey = Ez: This occurs when 2zy sin 2x = y2 sin 2x, or on the plane 2z = y,
with |x| < 2, |y| < 2, |z| < 1.

c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy2 cos 2x = zy sin 2x =
y2 sin 2x = 0. This condition is met on the plane y = 0, with |x| < 2, |z| < 2.
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1.8. Demonstrate the ambiguity that results when the cross product is used to find the angle between
two vectors by finding the angle between A = 3ax − 2ay + 4az and B = 2ax + ay − 2az. Does this
ambiguity exist when the dot product is used?

We use the relation A × B = |A||B| sin θn. With the given vectors we find

A × B = 14ay + 7az = 7
√

5
[
2ay + az√

5

]
︸ ︷︷ ︸

±n

=
√

9 + 4 + 16
√

4 + 1 + 4 sin θ n

where n is identified as shown; we see that n can be positive or negative, as sin θ can be
positive or negative. This apparent sign ambiguity is not the real problem, however, as we
really want the magnitude of the angle anyway. Choosing the positive sign, we are left with
sin θ = 7

√
5/(

√
29
√

9) = 0.969. Two values of θ (75.7◦ and 104.3◦) satisfy this equation, and
hence the real ambiguity.

In using the dot product, we find A · B = 6 − 2 − 8 = −4 = |A||B| cos θ = 3
√

29 cos θ, or
cos θ = −4/(3

√
29) = −0.248 ⇒ θ = −75.7◦. Again, the minus sign is not important, as we

care only about the angle magnitude. The main point is that only one θ value results when
using the dot product, so no ambiguity.

1.9. A field is given as

G =
25

(x2 + y2)
(xax + yay)

Find:
a) a unit vector in the direction of G at P (3, 4,−2): Have Gp = 25/(9+16)×(3, 4, 0) = 3ax +4ay,

and |Gp| = 5. Thus aG = (0.6, 0.8, 0).

b) the angle between G and ax at P : The angle is found through aG · ax = cos θ. So cos θ =
(0.6, 0.8, 0) · (1, 0, 0) = 0.6. Thus θ = 53◦.

c) the value of the following double integral on the plane y = 7:

∫ 4

0

∫ 2

0

G · aydzdx

∫ 4

0

∫ 2

0

25
x2 + y2

(xax + yay) · aydzdx =
∫ 4

0

∫ 2

0

25
x2 + 49

× 7 dzdx =
∫ 4

0

350
x2 + 49

dx

= 350 × 1
7

[
tan−1

(
4
7

)
− 0

]
= 26

1.10. By expressing diagonals as vectors and using the definition of the dot product, find the smaller angle
between any two diagonals of a cube, where each diagonal connects diametrically opposite corners,
and passes through the center of the cube:

Assuming a side length, b, two diagonal vectors would be A = b(ax + ay + az) and B =
b(ax − ay + az). Now use A ·B = |A||B| cos θ, or b2(1 − 1 + 1) = (

√
3b)(

√
3b) cos θ ⇒ cos θ =

1/3 ⇒ θ = 70.53◦. This result (in magnitude) is the same for any two diagonal vectors.
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1.11. Given the points M(0.1,−0.2,−0.1), N(−0.2, 0.1, 0.3), and P (0.4, 0, 0.1), find:

a) the vector RMN : RMN = (−0.2, 0.1, 0.3) − (0.1,−0.2,−0.1) = (−0.3, 0.3, 0.4).

b) the dot product RMN · RMP : RMP = (0.4, 0, 0.1) − (0.1,−0.2,−0.1) = (0.3, 0.2, 0.2). RMN ·
RMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2) = −0.09 + 0.06 + 0.08 = 0.05.

c) the scalar projection of RMN on RMP :

RMN · aRMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2)√
0.09 + 0.04 + 0.04

=
0.05√
0.17

= 0.12

d) the angle between RMN and RMP :

θM = cos−1

(
RMN · RMP

|RMN ||RMP |

)
= cos−1

(
0.05√

0.34
√

0.17

)
= 78◦

1.12. Show that the vector fields A = ρ cos φaρ + ρ sin φaφ + ρaz and B = ρ cos φaρ + ρ sinφaφ − ρaz

are everywhere perpendicular to each other:

We find A · B = ρ2(sin2 φ + cos2 φ) − ρ2 = 0 = |A||B| cos θ. Therefore cos θ = 0 or θ = 90◦.

1.13. a) Find the vector component of F = (10,−6, 5) that is parallel to G = (0.1, 0.2, 0.3):

F||G =
F · G
|G|2 G =

(10,−6, 5) · (0.1, 0.2, 0.3)
0.01 + 0.04 + 0.09

(0.1, 0.2, 0.3) = (0.93, 1.86, 2.79)

b) Find the vector component of F that is perpendicular to G:

FpG = F − F||G = (10,−6, 5) − (0.93, 1.86, 2.79) = (9.07,−7.86, 2.21)

c) Find the vector component of G that is perpendicular to F:

GpF = G − G||F = G − G · F
|F|2 F = (0.1, 0.2, 0.3) − 1.3

100 + 36 + 25
(10,−6, 5) = (0.02, 0.25, 0.26)

1.14. Show that the vector fields A = ar (sin 2θ)/r2+2aθ (sin θ)/r2 and B = r cos θ ar+r aθ are everywhere
parallel to each other:

Using the definition of the cross product, we find

A × B =
(

sin 2θ

r
− 2 sin θ cos θ

r

)
aφ = 0 = |A||B| sin θ n

Identify n = aφ, and so sin θ = 0, and therefore θ = 0 (they’re parallel).
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1.15. Three vectors extending from the origin are given as r1 = (7, 3,−2), r2 = (−2, 7,−3), and r3 =
(0, 2, 3). Find:

a) a unit vector perpendicular to both r1 and r2:

ap12 =
r1 × r2

|r1 × r2|
=

(5, 25, 55)
60.6

= (0.08, 0.41, 0.91)

b) a unit vector perpendicular to the vectors r1−r2 and r2−r3: r1−r2 = (9,−4, 1) and r2−r3 =
(−2, 5,−6). So r1 − r2 × r2 − r3 = (19, 52, 32). Then

ap =
(19, 52, 32)
|(19, 52, 32)| =

(19, 52, 32)
63.95

= (0.30, 0.81, 0.50)

c) the area of the triangle defined by r1 and r2:

Area =
1
2
|r1 × r2| = 30.3

d) the area of the triangle defined by the heads of r1, r2, and r3:

Area =
1
2
|(r2 − r1) × (r2 − r3)| =

1
2
|(−9, 4,−1) × (−2, 5,−6)| = 32.0

1.16. The vector field E = (B/ρ)aρ, where B is a constant, is to be translated such that it originates at
the line, x = 2, y = 0. Write the translated form of E in rectangular components:

First, transform the given field to rectangular components:

Ex =
B

ρ
aρ · ax =

B√
x2 + y2

cos φ =
B√

x2 + y2

x√
x2 + y2

=
Bx

x2 + y2

Using similar reasoning:

Ey =
B

ρ
aρ · ay =

B√
x2 + y2

sin φ =
By

x2 + y2

We then translate the two components to x = 2, y = 0, to obtain the final result:

E(x, y) =
B [(x − 2)ax + y ay]

(x − 2)2 + y2

1.17. Point A(−4, 2, 5) and the two vectors, RAM = (20, 18,−10) and RAN = (−10, 8, 15), define a
triangle.

a) Find a unit vector perpendicular to the triangle: Use

ap =
RAM × RAN

|RAM × RAN | =
(350,−200, 340)

527.35
= (0.664,−0.379, 0.645)

The vector in the opposite direction to this one is also a valid answer.
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1.17b) Find a unit vector in the plane of the triangle and perpendicular to RAN :

aAN =
(−10, 8, 15)√

389
= (−0.507, 0.406, 0.761)

Then

apAN = ap × aAN = (0.664,−0.379, 0.645) × (−0.507, 0.406, 0.761) = (−0.550,−0.832, 0.077)

The vector in the opposite direction to this one is also a valid answer.

c) Find a unit vector in the plane of the triangle that bisects the interior angle at A: A non-unit
vector in the required direction is (1/2)(aAM + aAN ), where

aAM =
(20, 18,−10)
|(20, 18,−10)| = (0.697, 0.627,−0.348)

Now

1
2
(aAM + aAN ) =

1
2
[(0.697, 0.627,−0.348) + (−0.507, 0.406, 0.761)] = (0.095, 0.516, 0.207)

Finally,

abis =
(0.095, 0.516, 0.207)
|(0.095, 0.516, 0.207)| = (0.168, 0.915, 0.367)

1.18. Transform the vector field H = (A/ρ)aφ, where A is a constant, from cylindrical coordinates to
spherical coordinates:

First, the unit vector does not change, since aφ is common to both coordinate systems. We
only need to express the cylindrical radius, ρ, as ρ = r sin θ, obtaining

H(r, θ) =
A

r sin θ
aφ

1.19. a) Express the field D = (x2 +y2)−1(xax +yay) in cylindrical components and cylindrical variables:
Have x = ρ cos φ, y = ρ sinφ, and x2 + y2 = ρ2. Therefore

D =
1
ρ
(cos φax + sin φay)

Then
Dρ = D · aρ =

1
ρ

[cos φ(ax · aρ) + sin φ(ay · aρ)] =
1
ρ

[
cos2 φ + sin2 φ

]
=

1
ρ

and

Dφ = D · aφ =
1
ρ

[cos φ(ax · aφ) + sin φ(ay · aφ)] =
1
ρ

[cos φ(− sin φ) + sin φ cos φ] = 0

Therefore
D =

1
ρ
aρ
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1.19b) Evaluate D at the point where ρ = 2, φ = 0.2π, and z = 5, expressing the result in cylindrical and
cartesian coordinates: At the given point, and in cylindrical coordinates, D = 0.5aρ. To express this
in cartesian, we use

D = 0.5(aρ · ax)ax + 0.5(aρ · ay)ay = 0.5 cos 36◦ax + 0.5 sin 36◦ay = 0.41ax + 0.29ay

1.20. A cylinder of radius a, centered on the z axis, rotates about the z axis at angular velocity Ω rad/s.
The rotation direction is counter-clockwise when looking in the positive z direction.

a) Using cylindrical components, write an expression for the velocity field, v, that gives the tan-
gential velocity at any point within the cylinder:

Tangential velocity is angular velocity times the perpendicular distance from the rotation axis.
With counter-clockwise rotation, we therefore find v(ρ) = −Ωρaφ (ρ < a).

b) Convert your result from part a to spherical components:

In spherical, the component direction, aφ, is the same. We obtain

v(r, θ) = −Ωr sin θ aφ (r sin θ < a)

c) Convert to rectangular components:

vx = −Ωρaφ · ax = −Ω(x2 + y2)1/2(− sinφ) = −Ω(x2 + y2)1/2 −y

(x2 + y2)1/2
= Ωy

Similarly

vy = −Ωρaφ · ay = −Ω(x2 + y2)1/2(cos φ) = −Ω(x2 + y2)1/2 x

(x2 + y2)1/2
= −Ωx

Finally v(x, y) = Ω [y ax − xay], where (x2 + y2)1/2 < a.

1.21. Express in cylindrical components:

a) the vector from C(3, 2,−7) to D(−1,−4, 2):
C(3, 2,−7) → C(ρ = 3.61, φ = 33.7◦, z = −7) and
D(−1,−4, 2) → D(ρ = 4.12, φ = −104.0◦, z = 2).
Now RCD = (−4,−6, 9) and Rρ = RCD · aρ = −4 cos(33.7) − 6 sin(33.7) = −6.66. Then
Rφ = RCD · aφ = 4 sin(33.7) − 6 cos(33.7) = −2.77. So RCD = −6.66aρ − 2.77aφ + 9az

b) a unit vector at D directed toward C:
RCD = (4, 6,−9) and Rρ = RDC · aρ = 4 cos(−104.0) + 6 sin(−104.0) = −6.79. Then Rφ =
RDC · aφ = 4[− sin(−104.0)] + 6 cos(−104.0) = 2.43. So RDC = −6.79aρ + 2.43aφ − 9az

Thus aDC = −0.59aρ + 0.21aφ − 0.78az

c) a unit vector at D directed toward the origin: Start with rD = (−1,−4, 2), and so the
vector toward the origin will be −rD = (1, 4,−2). Thus in cartesian the unit vector is a =
(0.22, 0.87,−0.44). Convert to cylindrical:
aρ = (0.22, 0.87,−0.44) · aρ = 0.22 cos(−104.0) + 0.87 sin(−104.0) = −0.90, and
aφ = (0.22, 0.87,−0.44) · aφ = 0.22[− sin(−104.0)] + 0.87 cos(−104.0) = 0, so that finally,
a = −0.90aρ − 0.44az.
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1.22. A sphere of radius a, centered at the origin, rotates about the z axis at angular velocity Ω rad/s.
The rotation direction is clockwise when one is looking in the positive z direction.

a) Using spherical components, write an expression for the velocity field, v, which gives the tan-
gential velocity at any point within the sphere:

As in problem 1.20, we find the tangential velocity as the product of the angular velocity and
the perperdicular distance from the rotation axis. With clockwise rotation, we obtain

v(r, θ) = Ωr sin θ aφ (r < a)

b) Convert to rectangular components:

From here, the problem is the same as part c in Problem 1.20, except the rotation direction is
reversed. The answer is v(x, y) = Ω [−y ax + xay], where (x2 + y2 + z2)1/2 < a.

1.23. The surfaces ρ = 3, ρ = 5, φ = 100◦, φ = 130◦, z = 3, and z = 4.5 define a closed surface.
a) Find the enclosed volume:

Vol =
∫ 4.5

3

∫ 130◦

100◦

∫ 5

3

ρ dρ dφ dz = 6.28

NOTE: The limits on the φ integration must be converted to radians (as was done here, but not
shown).

b) Find the total area of the enclosing surface:

Area = 2
∫ 130◦

100◦

∫ 5

3

ρ dρ dφ +
∫ 4.5

3

∫ 130◦

100◦
3 dφ dz

+
∫ 4.5

3

∫ 130◦

100◦
5 dφ dz + 2

∫ 4.5

3

∫ 5

3

dρ dz = 20.7

c) Find the total length of the twelve edges of the surfaces:

Length = 4 × 1.5 + 4 × 2 + 2 ×
[

30◦

360◦
× 2π × 3 +

30◦

360◦
× 2π × 5

]
= 22.4

d) Find the length of the longest straight line that lies entirely within the volume: This will be
between the points A(ρ = 3, φ = 100◦, z = 3) and B(ρ = 5, φ = 130◦, z = 4.5). Performing
point transformations to cartesian coordinates, these become A(x = −0.52, y = 2.95, z = 3)
and B(x = −3.21, y = 3.83, z = 4.5). Taking A and B as vectors directed from the origin, the
requested length is

Length = |B − A| = |(−2.69, 0.88, 1.5)| = 3.21

8



1.24. Express the field E = Aar/r2 in
a) rectangular components:

Ex =
A

r2
ar · ax =

A

r2
sin θ cos φ =

A

x2 + y2 + z2

√
x2 + y2√

x2 + y2 + z2

x√
x2 + y2

=
Ax

(x2 + y2 + z2)3/2

Ey =
A

r2
ar · ay =

A

r2
sin θ sinφ =

A

x2 + y2 + z2

√
x2 + y2√

x2 + y2 + z2

y√
x2 + y2

=
Ay

(x2 + y2 + z2)3/2

Ez =
A

r2
ar · az =

A

r2
cos θ =

A

x2 + y2 + z2

z√
x2 + y2 + z2

=
Az

(x2 + y2 + z2)3/2

Finally

E(x, y, z) =
A(xax + y ay + z az)

(x2 + y2 + z2)3/2

b) cylindrical components: First, there is no aφ component, since there is none in the spherical
representation. What remains are:

Eρ =
A

r2
ar · aρ =

A

r2
sin θ =

A

(ρ2 + z2)
ρ√

ρ2 + z2
=

Aρ

(ρ2 + z2)3/2

and
Ez =

A

r2
ar · az =

A

r2
cos θ =

A

(ρ2 + z2)
z√

ρ2 + z2
=

Az

(ρ2 + z2)3/2

Finally

E(ρ, z) =
A(ρaρ + z az)
(ρ2 + z2)3/2

1.25. Given point P (r = 0.8, θ = 30◦, φ = 45◦), and

E =
1
r2

(
cos φar +

sin φ

sin θ
aφ

)

a) Find E at P : E = 1.10aρ + 2.21aφ.
b) Find |E| at P : |E| =

√
1.102 + 2.212 = 2.47.

c) Find a unit vector in the direction of E at P :

aE =
E
|E| = 0.45ar + 0.89aφ

1.26. Express the uniform vector field, F = 5ax in
a) cylindrical components: Fρ = 5ax · aρ = 5 cos φ, and Fφ = 5ax · aφ = −5 sinφ. Combining, we

obtain F(ρ, φ) = 5(cos φaρ − sin φaφ).

b) spherical components: Fr = 5ax ·ar = 5 sin θ cos φ; Fθ = 5ax ·aθ = 5 cos θ cos φ; Fφ = 5ax ·aφ =
−5 sinφ. Combining, we obtain F(r, θ, φ) = 5 [sin θ cos φar + cos θ cos φaθ − sin φaφ].
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1.27. The surfaces r = 2 and 4, θ = 30◦ and 50◦, and φ = 20◦ and 60◦ identify a closed surface.
a) Find the enclosed volume: This will be

Vol =
∫ 60◦

20◦

∫ 50◦

30◦

∫ 4

2

r2 sin θdrdθdφ = 2.91

where degrees have been converted to radians.
b) Find the total area of the enclosing surface:

Area =
∫ 60◦

20◦

∫ 50◦

30◦
(42 + 22) sin θdθdφ +

∫ 4

2

∫ 60◦

20◦
r(sin 30◦ + sin 50◦)drdφ

+ 2
∫ 50◦

30◦

∫ 4

2

rdrdθ = 12.61

c) Find the total length of the twelve edges of the surface:

Length = 4
∫ 4

2

dr + 2
∫ 50◦

30◦
(4 + 2)dθ +

∫ 60◦

20◦
(4 sin 50◦ + 4 sin 30◦ + 2 sin 50◦ + 2 sin 30◦)dφ

= 17.49

d) Find the length of the longest straight line that lies entirely within the surface: This will be
from A(r = 2, θ = 50◦, φ = 20◦) to B(r = 4, θ = 30◦, φ = 60◦) or

A(x = 2 sin 50◦ cos 20◦, y = 2 sin 50◦ sin 20◦, z = 2 cos 50◦)

to
B(x = 4 sin 30◦ cos 60◦, y = 4 sin 30◦ sin 60◦, z = 4 cos 30◦)

or finally A(1.44, 0.52, 1.29) to B(1.00, 1.73, 3.46). Thus B − A = (−0.44, 1.21, 2.18) and

Length = |B − A| = 2.53

1.28. Express the vector field, G = 8 sin φaθ in

a) rectangular components:

Gx = 8 sinφaθ · ax = 8 sin φ cos θ cos φ =
8y√

x2 + y2

z√
x2 + y2 + z2

x√
x2 + y2

=
8xyz

(x2 + y2)
√

x2 + y2 + z2

Gy = 8 sinφaθ · ay = 8 sin φ cos θ sin φ =
8y√

x2 + y2

z√
x2 + y2 + z2

y√
x2 + y2

=
8y2z

(x2 + y2)
√

x2 + y2 + z2
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1.28a) (continued)

Gz = 8 sinφaθ · az = 8 sin φ(− sin θ) =
−8y√
x2 + y2

√
x2 + y2√

x2 + y2 + z2

=
−8y√

x2 + y2 + z2

Finally,

G(x, y, z) =
8y√

x2 + y2 + z2

[
xz

x2 + y2
ax +

yz

x2 + y2
ay − az

]

b) cylindrical components: The aθ direction will transform to cylindrical components in the aρ

and az directions only, where

Gρ = 8 sinφaθ · aρ = 8 sin φ cos θ = 8 sin φ
z√

ρ2 + z2

The z component will be the same as found in part a, so we finally obtain

G(ρ, z) =
8ρ sin φ√
ρ2 + z2

[
z

ρ
aρ − az

]

1.29. Express the unit vector ax in spherical components at the point:
a) r = 2, θ = 1 rad, φ = 0.8 rad: Use

ax = (ax · ar)ar + (ax · aθ)aθ + (ax · aφ)aφ =
sin(1) cos(0.8)ar + cos(1) cos(0.8)aθ + (− sin(0.8))aφ = 0.59ar + 0.38aθ − 0.72aφ

b) x = 3, y = 2, z = −1: First, transform the point to spherical coordinates. Have r =
√

14,
θ = cos−1(−1/

√
14) = 105.5◦, and φ = tan−1(2/3) = 33.7◦. Then

ax = sin(105.5◦) cos(33.7◦)ar + cos(105.5◦) cos(33.7◦)aθ + (− sin(33.7◦))aφ

= 0.80ar − 0.22aθ − 0.55aφ

c) ρ = 2.5, φ = 0.7 rad, z = 1.5: Again, convert the point to spherical coordinates. r =
√

ρ2 + z2 =√
8.5, θ = cos−1(z/r) = cos−1(1.5/

√
8.5) = 59.0◦, and φ = 0.7 rad = 40.1◦. Now

ax = sin(59◦) cos(40.1◦)ar + cos(59◦) cos(40.1◦)aθ + (− sin(40.1◦))aφ

= 0.66ar + 0.39aθ − 0.64aφ

1.30. At point B(5, 120◦, 75◦) a vector field has the value A = −12ar − 5aθ + 15aφ. Find the vector
component of A that is:

a) normal to the surface r = 5: This will just be the radial component, or −12ar.

b) tangent to the surface r = 5: This will be the remaining components of A that are not normal,
or −5aθ + 15aφ.

c) tangent to the cone θ = 120◦: The unit vector normal to the cone is aθ, so the remaining
components are tangent: −12ar + 15aφ.

d) Find a unit vector that is perpendicular to A and tangent to the cone θ = 120◦: Call this vector
b = br ar + bφ aφ, where b2

r + b2
φ = 1. We then require that A · b = 0 = −12br + 15bφ, and

therefore bφ = (4/5)br. Now b2
r[1 + (16/25)] = 1, so br = 5/

√
41. Then bφ = 4/

√
41. Finally,

b =
(
1/
√

41
)
(5ar + 4aφ)
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CHAPTER 2

2.1. Four 10nC positive charges are located in the z = 0 plane at the corners of a square 8cm on a side.
A fifth 10nC positive charge is located at a point 8cm distant from the other charges. Calculate the
magnitude of the total force on this fifth charge for ε = ε0:

Arrange the charges in the xy plane at locations (4,4), (4,-4), (-4,4), and (-4,-4). Then the fifth charge
will be on the z axis at location z = 4

√
2, which puts it at 8cm distance from the other four. By

symmetry, the force on the fifth charge will be z-directed, and will be four times the z component of
force produced by each of the four other charges.

F =
4√
2
× q2

4πε0d2
=

4√
2
× (10−8)2

4π(8.85 × 10−12)(0.08)2
= 4.0 × 10−4 N

2.2. Two point charges of Q1 coulombs each are located at (0,0,1) and (0,0,-1). (a) Determine the locus
of the possible positions of a third charge Q2 where Q2 may be any positive or negative value, such
that the total field E = 0 at (0,1,0):

The total field at (0,1,0) from the two Q1 charges (where both are positive) will be

E1(0, 1, 0) =
2Q1

4πε0R2
cos 45◦ ay =

Q1

4
√

2πε0
ay

where R =
√

2. To cancel this field, Q2 must be placed on the y axis at positions y > 1 if Q2 > 0,
and at positions y < 1 if Q2 < 0. In either case the field from Q2 will be

E2(0, 1, 0) =
−|Q2|
4πε0

ay

and the total field is then

Et = E1 + E2 =
[

Q1

4
√

2πε0
− |Q2|

4πε0

]
= 0

Therefore
Q1√

2
=

|Q2|
(y − 1)2

⇒ y = 1 ± 21/4

√
|Q2|
Q1

where the plus sign is used if Q2 > 0, and the minus sign is used if Q2 < 0.

(b) What is the locus if the two original charges are Q1 and −Q1?

In this case the total field at (0,1,0) is E1(0, 1, 0) = −Q1/(4
√

2πε0)az, where the positive Q1 is
located at the positive z (= 1) value. We now need Q2 to lie along the line x = 0, y = 1 in order
to cancel the field from the positive and negative Q1 charges. Assuming Q2 is located at (0, 1, z),
the total field is now

Et = E1 + E2 =
−Q1

4
√

2πε0
az +

|Q2|
4πε0z2

= 0

or z = ±21/4
√
|Q2|/Q1, where the plus sign is used if Q2 < 0, and the minus sign if Q2 > 0.
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2.3. Point charges of 50nC each are located at A(1, 0, 0), B(−1, 0, 0), C(0, 1, 0), and D(0,−1, 0) in free
space. Find the total force on the charge at A.

The force will be:

F =
(50 × 10−9)2

4πε0

[
RCA

|RCA|3
+

RDA

|RDA|3
+

RBA

|RBA|3
]

where RCA = ax − ay, RDA = ax + ay, and RBA = 2ax. The magnitudes are |RCA| = |RDA| =
√

2,
and |RBA| = 2. Substituting these leads to

F =
(50 × 10−9)2

4πε0

[
1

2
√

2
+

1
2
√

2
+

2
8

]
ax = 21.5ax µN

where distances are in meters.

2.4. Eight identical point charges of Q C each are located at the corners of a cube of side length a, with
one charge at the origin, and with the three nearest charges at (a, 0, 0), (0, a, 0), and (0, 0, a). Find
an expression for the total vector force on the charge at P (a, a, a), assuming free space:

The total electric field at P (a, a, a) that produces a force on the charge there will be the sum
of the fields from the other seven charges. This is written below, where the charge locations
associated with each term are indicated:

Enet(a, a, a) =
q

4πε0a2


ax + ay + az

3
√

3︸ ︷︷ ︸
(0,0,0)

+
ay + az

2
√

2︸ ︷︷ ︸
(a,0,0)

+
ax + az

2
√

2︸ ︷︷ ︸
(0,a,0)

+
ax + ay

2
√

2︸ ︷︷ ︸
(0,0,a)

+ ax︸︷︷︸
(0,a,a)

+ ay︸︷︷︸
(a,0,a)

+ az︸︷︷︸
(a,a,0)




The force is now the product of this field and the charge at (a, a, a). Simplifying, we obtain

F(a, a, a) = qEnet(a, a, a) =
q2

4πε0a2

[
1

3
√

3
+

1√
2

+ 1
]

(ax + ay + az) =
1.90 q2

4πε0a2
(ax + ay + az)

in which the magnitude is |F| = 3.29 q2/(4πε0a
2).

2.5. Let a point charge Q125 nC be located at P1(4,−2, 7) and a charge Q2 = 60 nC be at P2(−3, 4,−2).

a) If ε = ε0, find E at P3(1, 2, 3): This field will be

E =
10−9

4πε0

[
25R13

|R13|3
+

60R23

|R23|3
]

where R13 = −3ax +4ay −4az and R23 = 4ax −2ay +5az. Also, |R13| =
√

41 and |R23| =
√

45.
So

E =
10−9

4πε0

[
25 × (−3ax + 4ay − 4az)

(41)1.5
+

60 × (4ax − 2ay + 5az)
(45)1.5

]
= 4.58ax − 0.15ay + 5.51az

b) At what point on the y axis is Ex = 0? P3 is now at (0, y, 0), so R13 = −4ax + (y + 2)ay − 7az

and R23 = 3ax + (y − 4)ay + 2az. Also, |R13| =
√

65 + (y + 2)2 and |R23| =
√

13 + (y − 4)2.
Now the x component of E at the new P3 will be:

Ex =
10−9

4πε0

[
25 × (−4)

[65 + (y + 2)2]1.5
+

60 × 3
[13 + (y − 4)2]1.5

]
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To obtain Ex = 0, we require the expression in the large brackets to be zero. This expression
simplifies to the following quadratic:

0.48y2 + 13.92y + 73.10 = 0

which yields the two values: y = −6.89,−22.11

2.6. Three point charges, each 5 × 10−9 C, are located on the x axis at x = −1, 0, and 1 in free space.

a) Find E at x = 5: At a general location, x,

E(x) =
q

4πε0

[
1

(x + 1)2
+

1
x2

+
1

(x − 1)2

]
ax

At x = 5, and with q = 5 × 10−9 C, this becomes E(x = 5) = 5.8ax V/m.

b) Determine the value and location of the equivalent single point charge that would produce the
same field at very large distances: For x >> 1, the above general field in part a becomes

E(x >> 1) .=
3q

4πε0x2
ax

Therefore, the equivalent charge will have value 3q = 1.5 × 10−8 C, and will be at location x = 0.

c) Determine E at x = 5, using the approximation of (b). Using 3q = 1.5 × 10−8 C and x = 5 in
the part b result gives E(x = 5) .= 5.4ax V/m, or about 7% lower than the exact result.

2.7. A 2 µC point charge is located at A(4, 3, 5) in free space. Find Eρ, Eφ, and Ez at P (8, 12, 2). Have

EP =
2 × 10−6

4πε0

RAP

|RAP |3
=

2 × 10−6

4πε0

[
4ax + 9ay − 3az

(106)1.5

]
= 65.9ax + 148.3ay − 49.4az

Then, at point P , ρ =
√

82 + 122 = 14.4, φ = tan−1(12/8) = 56.3◦, and z = z. Now,

Eρ = Ep · aρ = 65.9(ax · aρ) + 148.3(ay · aρ) = 65.9 cos(56.3◦) + 148.3 sin(56.3◦) = 159.7

and

Eφ = Ep · aφ = 65.9(ax · aφ) + 148.3(ay · aφ) = −65.9 sin(56.3◦) + 148.3 cos(56.3◦) = 27.4

Finally, Ez = −49.4 V/m

2.8. A crude device for measuring charge consists of two small insulating spheres of radius a, one of which
is fixed in position. The other is movable along the x axis, and is subject to a restraining force kx,
where k is a spring constant. The uncharged spheres are centered at x = 0 and x = d, the latter
fixed. If the spheres are given equal and opposite charges of Q coulombs:

a) Obtain the expression by which Q may be found as a function of x: The spheres will attract, and
so the movable sphere at x = 0 will move toward the other until the spring and Coulomb forces
balance. This will occur at location x for the movable sphere. With equal and opposite forces,
we have

Q2

4πε0(d − x)2
= kx
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from which Q = 2(d − x)
√

πε0kx.

b) Determine the maximum charge that can be measured in terms of ε0, k, and d, and state the
separation of the spheres then: With increasing charge, the spheres move toward each other until
they just touch at xmax = d − 2a. Using the part a result, we find the maximum measurable
charge: Qmax = 4a

√
πε0k(d − 2a). Presumably some form of stop mechanism is placed at

x = x−
max to prevent the spheres from actually touching.

c) What happens if a larger charge is applied? No further motion is possible, so nothing happens.

2.9. A 100 nC point charge is located at A(−1, 1, 3) in free space.
a) Find the locus of all points P (x, y, z) at which Ex = 500 V/m: The total field at P will be:

EP =
100 × 10−9

4πε0

RAP

|RAP |3

where RAP = (x+1)ax+(y−1)ay+(z−3)az, and where |RAP | = [(x+1)2+(y−1)2+(z−3)2]1/2.
The x component of the field will be

Ex =
100 × 10−9

4πε0

[
(x + 1)

[(x + 1)2 + (y − 1)2 + (z − 3)2]1.5

]
= 500 V/m

And so our condition becomes:

(x + 1) = 0.56 [(x + 1)2 + (y − 1)2 + (z − 3)2]1.5

b) Find y1 if P (−2, y1, 3) lies on that locus: At point P , the condition of part a becomes

3.19 =
[
1 + (y1 − 1)2

]3
from which (y1 − 1)2 = 0.47, or y1 = 1.69 or 0.31

2.10. A positive test charge is used to explore the field of a single positive point charge Q at P (a, b, c). If
the test charge is placed at the origin, the force on it is in the direction 0.5ax − 0.5

√
3ay, and when

the test charge is moved to (1,0,0), the force is in the direction of 0.6ax − 0.8ay. Find a, b, and c:

We first construct the field using the form of Eq. (12). We identify r = xax + yay + zaz and
r′ = aax + bay + caz. Then

E =
Q [(x − a)ax + (y − b)ay + (z − c)az]

4πε0 [(x − a)2 + (y − b)2 + (z − c)2]3/2
(1)

Using (1), we can write the two force directions at the two test charge positions as follows:

at (0, 0, 0) :
[−aax − bay − caz]

(a2 + b2 + c2)1/2
= 0.5ax − 0.5

√
3ay (2)

at (1, 0, 0) :
[(1 − a)ax − bay − caz]
((1 − a)2 + b2 + c2)1/2

= 0.6ax − 0.8ay (3)

4



We observe immediately that c = 0. Also, from (2) we find that b = −a
√

3, and therefore√
a2 + b2 = 2a. Using this information in (3), we write for the x component:

1 − a√
(1 − a)2 + b2

=
1 − a√

1 − 2a + 4a2
= 0.6

or 0.44a2 + 1.28a − 0.64 = 0, so that

a =
−1.28 ±

√
(1.28)2 + 4(0.44)(0.64)

0.88
= 0.435 or − 3.344

The corresponding b values are respectively −0.753 and 5.793. So the two possible P coordinate
sets are (0.435,−0.753, 0) and (−3.344, 5.793, 0). By direct substitution, however, it is found that
only one possibility is entirely consistent with both (2) and (3), and this is

P (a, b, c) = (−3.344, 5.793, 0)

2.11. A charge Q0 located at the origin in free space produces a field for which Ez = 1 kV/m at point
P (−2, 1,−1).

a) Find Q0: The field at P will be

EP =
Q0

4πε0

[−2ax + ay − az

61.5

]

Since the z component is of value 1 kV/m, we find Q0 = −4πε061.5 × 103 = −1.63 µC.

b) Find E at M(1, 6, 5) in cartesian coordinates: This field will be:

EM =
−1.63 × 10−6

4πε0

[
ax + 6ay + 5az

[1 + 36 + 25]1.5

]

or EM = −30.11ax − 180.63ay − 150.53az.

c) Find E at M(1, 6, 5) in cylindrical coordinates: At M , ρ =
√

1 + 36 = 6.08, φ = tan−1(6/1) =
80.54◦, and z = 5. Now

Eρ = EM · aρ = −30.11 cos φ − 180.63 sinφ = −183.12

Eφ = EM · aφ = −30.11(− sin φ) − 180.63 cos φ = 0 (as expected)

so that EM = −183.12aρ − 150.53az.

d) Find E at M(1, 6, 5) in spherical coordinates: At M , r =
√

1 + 36 + 25 = 7.87, φ = 80.54◦ (as
before), and θ = cos−1(5/7.87) = 50.58◦. Now, since the charge is at the origin, we expect to
obtain only a radial component of EM . This will be:

Er = EM · ar = −30.11 sin θ cos φ − 180.63 sin θ sin φ − 150.53 cos θ = −237.1
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2.12. Electrons are in random motion in a fixed region in space. During any 1µs interval, the probability
of finding an electron in a subregion of volume 10−15 m2 is 0.27. What volume charge density,
appropriate for such time durations, should be assigned to that subregion?

The finite probabilty effectively reduces the net charge quantity by the probability fraction. With
e = −1.602 × 10−19 C, the density becomes

ρv = −0.27 × 1.602 × 10−19

10−15
= −43.3 µC/m3

2.13. A uniform volume charge density of 0.2 µC/m3 is present throughout the spherical shell extending
from r = 3 cm to r = 5 cm. If ρv = 0 elsewhere:

a) find the total charge present throughout the shell: This will be

Q =
∫ 2π

0

∫ π

0

∫ .05

.03

0.2 r2 sin θ dr dθ dφ =
[
4π(0.2)

r3

3

].05

.03

= 8.21 × 10−5 µC = 82.1 pC

b) find r1 if half the total charge is located in the region 3 cm < r < r1: If the integral over r in
part a is taken to r1, we would obtain[

4π(0.2)
r3

3

]r1

.03

= 4.105 × 10−5

Thus

r1 =
[
3 × 4.105 × 10−5

0.2 × 4π
+ (.03)3

]1/3

= 4.24 cm

2.14. The charge density varies with radius in a cylindrical coordinate system as ρv = ρ0/(ρ2 + a2)2 C/m3.
Within what distance from the z axis does half the total charge lie?

Choosing a unit length in z, the charge contained up to radius ρ is

Q(ρ) =
∫ 1

0

∫ 2π

0

∫ ρ

0

ρ0

(ρ′2 + a2)2
ρ′dρ′dφdz = 2πρ0

[ −1
2(a2 + ρ′2)

]ρ

0

=
πρ0

a2

[
1 − 1

1 + ρ2/a2

]

The total charge is found when ρ → ∞, or Qnet = πρ0/a2. It is seen from the Q(ρ) expression
that half of this occurs when ρ = a.

2.15. A spherical volume having a 2 µm radius contains a uniform volume charge density of 1015 C/m3.

a) What total charge is enclosed in the spherical volume?
This will be Q = (4/3)π(2 × 10−6)3 × 1015 = 3.35 × 10−2 C.

b) Now assume that a large region contains one of these little spheres at every corner of a cubical
grid 3mm on a side, and that there is no charge between spheres. What is the average volume
charge density throughout this large region? Each cube will contain the equivalent of one little
sphere. Neglecting the little sphere volume, the average density becomes

ρv,avg =
3.35 × 10−2

(0.003)3
= 1.24 × 106 C/m3
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2.16. Within a region of free space, charge density is given as ρv = ρ0r/a C/m3, where ρ0 and a are
constants. Find the total charge lying within:

a) the sphere, r ≤ a: This will be

Qa =
∫ 2π

0

∫ π

0

∫ a

0

ρ0r

a
r2 sin θ dr dθ dφ = 4π

∫ a

0

ρ0r
3

a
dr = πρ0a

3

b) the cone, r ≤ a, 0 ≤ θ ≤ 0.1π:

Qb =
∫ 2π

0

∫ 0.1π

0

∫ a

0

ρ0r

a
r2 sin θ dr dθ dφ = 2π

ρ0a
3

4
[1 − cos(0.1π)] = 0.024πρ0a

3

c) the region, r ≤ a, 0 ≤ θ ≤ 0.1π, 0 ≤ φ ≤ 0.2π.

Qc =
∫ 0.2π

0

∫ 0.1π

0

∫ a

0

ρ0r

a
r2 sin θ dr dθ dφ = 0.024πρ0a

3

(
0.2π

2π

)
= 0.0024πρ0a

3

2.17. A uniform line charge of 16 nC/m is located along the line defined by y = −2, z = 5. If ε = ε0:

a) Find E at P (1, 2, 3): This will be

EP =
ρl

2πε0

RP

|RP |2

where RP = (1, 2, 3) − (1,−2, 5) = (0, 4,−2), and |RP |2 = 20. So

EP =
16 × 10−9

2πε0

[
4ay − 2az

20

]
= 57.5ay − 28.8az V/m

b) Find E at that point in the z = 0 plane where the direction of E is given by (1/3)ay − (2/3)az:
With z = 0, the general field will be

Ez=0 =
ρl

2πε0

[
(y + 2)ay − 5az

(y + 2)2 + 25

]

We require |Ez| = −|2Ey|, so 2(y + 2) = 5. Thus y = 1/2, and the field becomes:

Ez=0 =
ρl

2πε0

[
2.5ay − 5az

(2.5)2 + 25

]
= 23ay − 46az

2.18. An infinite uniform line charge ρL = 2 nC/m lies along the x axis in free space, while point charges
of 8 nC each are located at (0,0,1) and (0,0,-1).

a) Find E at (2,3,-4).

The net electric field from the line charge, the point charge at z = 1, and the point charge at
z = −1 will be (in that order):

Etot =
1

4πε0

[
2ρL(3ay − 4az)

25
+

q(2ax + 3ay − 5az)
(38)3/2

+
q(2ax + 3ay − 3az)

(22)3/2

]
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Then, with the given values of ρL and q, the field evaluates as

Etot = 2.0ax + 7.3ay − 9.4az V/m

b) To what value should ρL be changed to cause E to be zero at (0,0,3)?

In this case, we only need scalar addition to find the net field:

E(0, 0, 3) =
ρL

2πε0(3)
+

q

4πε0(2)2
+

q

4πε0(4)2
= 0

Therefore

q

[
1
4

+
1
16

]
= −2ρL

3
⇒ ρL = −15

32
q = −0.47q = −3.75 nC/m

2.19. A uniform line charge of 2 µC/m is located on the z axis. Find E in cartesian coordinates at P (1, 2, 3)
if the charge extends from
a) −∞ < z < ∞: With the infinite line, we know that the field will have only a radial component

in cylindrical coordinates (or x and y components in cartesian). The field from an infinite line
on the z axis is generally E = [ρl/(2πε0ρ)]aρ. Therefore, at point P :

EP =
ρl

2πε0

RzP

|RzP |2
=

(2 × 10−6)
2πε0

ax + 2ay

5
= 7.2ax + 14.4ay kV/m

where RzP is the vector that extends from the line charge to point P , and is perpendicular to
the z axis; i.e., RzP = (1, 2, 3) − (0, 0, 3) = (1, 2, 0).

b) −4 ≤ z ≤ 4: Here we use the general relation

EP =
∫

ρldz

4πε0

r − r′

|r − r′|3

where r = ax + 2ay + 3az and r′ = zaz. So the integral becomes

EP =
(2 × 10−6)

4πε0

∫ 4

−4

ax + 2ay + (3 − z)az

[5 + (3 − z)2]1.5
dz

Using integral tables, we obtain:

EP = 3597
[
(ax + 2ay)(z − 3) + 5az

(z2 − 6z + 14)

]4

−4

V/m = 4.9ax + 9.8ay + 4.9az kV/m

The student is invited to verify that when evaluating the above expression over the limits −∞ <
z < ∞, the z component vanishes and the x and y components become those found in part a.
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2.20. The portion of the z axis for which |z| < 2 carries a nonuniform line charge density of 10|z| nC/m,
and ρL = 0 elsewhere. Determine E in free space at:

a) (0,0,4): The general form for the differential field at (0,0,4) is

dE =
ρL dz (r − r′)
4πε0|r − r′|3

where r = 4az and r′ = z az. Therefore, r − r′ = (4 − z)az and |r − r′| = 4 − z. Substituting
ρL = 10|z| nC/m, the total field is

E(0, 0, 4) =
∫ 2

−2

10−8|z| dz az

4πε0(4 − z)2
=

∫ 2

0

10−8z dz az

4πε0(4 − z)2
−

∫ 0

−2

10−8z dz az

4πε0(4 − z)2

=
10−8

4π × 8.854 × 10−12

{[
ln(4 − z) +

4
4 − z

]2

0

−
[
ln(4 − z) +

4
4 − z

]0

−2

}
az

= 34.0az V/m

b) (0,4,0): In this case, r = 4ay and r′ = z az as before. The field at (0,4,0) is then

E(0, 4, 0) =
∫ 2

−2

10−8|z| dz (4ay − z az)
4πε0(16 + z2)3/2

Note the symmetric limits on the integral. As the z component of the integrand changes sign
at z = 0, it will contribute equal and opposite portions to the overall integral, which will can-
cel completely (the z component integral has odd parity). This leaves only the y component
integrand, which has even parity. The integral therefore simplifies to

E(0, 4, 0) = 2
∫ 2

0

4 × 10−8z dz ay

4πε0(16 + z2)3/2
=

−2 × 10−8 ay

π × 8.854 × 10−12

[
1√

16 + z2

]2

0

= 18.98ay V/m

2.21. Two identical uniform line charges with ρl = 75 nC/m are located in free space at x = 0, y = ±0.4
m. What force per unit length does each line charge exert on the other? The charges are parallel to
the z axis and are separated by 0.8 m. Thus the field from the charge at y = −0.4 evaluated at the
location of the charge at y = +0.4 will be E = [ρl/(2πε0(0.8))]ay. The force on a differential length
of the line at the positive y location is dF = dqE = ρldzE. Thus the force per unit length acting on
the line at postive y arising from the charge at negative y is

F =
∫ 1

0

ρ2
l dz

2πε0(0.8)
ay = 1.26 × 10−4 ay N/m = 126ay µN/m

The force on the line at negative y is of course the same, but with −ay.

2.22. Two identical uniform sheet charges with ρs = 100 nC/m2 are located in free space at z = ±2.0 cm.
What force per unit area does each sheet exert on the other?

The field from the top sheet is E = −ρs/(2ε0)az V/m. The differential force produced by this
field on the bottom sheet is the charge density on the bottom sheet times the differential area
there, multiplied by the electric field from the top sheet: dF = ρsdaE. The force per unit area is
then just F = ρsE = (100 × 10−9)(−100 × 10−9)/(2ε0)az = −5.6 × 10−4 az N/m2.
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2.23. Given the surface charge density, ρs = 2µC/m2, in the region ρ < 0.2 m, z = 0, and is zero elsewhere,
find E at:

a) PA(ρ = 0, z = 0.5): First, we recognize from symmetry that only a z component of E will be
present. Considering a general point z on the z axis, we have r = zaz. Then, with r′ = ρaρ, we
obtain r − r′ = zaz − ρaρ. The superposition integral for the z component of E will be:

Ez,PA
=

ρs

4πε0

∫ 2π

0

∫ 0.2

0

z ρ dρ dφ

(ρ2 + z2)1.5
= −2πρs

4πε0
z

[
1√

z2 + ρ2

]0.2

0

=
ρs

2ε0
z

[
1√
z2

− 1√
z2 + 0.04

]

With z = 0.5 m, the above evaluates as Ez,PA
= 8.1 kV/m.

b) With z at −0.5 m, we evaluate the expression for Ez to obtain Ez,PB
= −8.1 kV/m.

2.24. For the charged disk of Problem 2.23, show that:
a) the field along the z axis reduces to that of an infinite sheet charge at small values of z: In

general, the field can be expressed as

Ez =
ρs

2ε0

[
1 − z√

z2 + 0.04

]

At small z, this reduces to Ez
.= ρs/2ε0, which is the infinite sheet charge field.

b) the z axis field reduces to that of a point charge at large values of z: The development is as
follows:

Ez =
ρs

2ε0

[
1 − z√

z2 + 0.04

]
=

ρs

2ε0

[
1 − z

z
√

1 + 0.04/z2

]
.=

ρs

2ε0

[
1 − 1

1 + (1/2)(0.04)/z2

]

where the last approximation is valid if z >> .04. Continuing:

Ez
.=

ρs

2ε0

[
1 − [1 − (1/2)(0.04)/z2]

]
=

0.04ρs

4ε0z2
=

π(0.2)2ρs

4πε0z2

This the point charge field, where we identify q = π(0.2)2ρs as the total charge on the disk (which
now looks like a point).

2.25. Find E at the origin if the following charge distributions are present in free space: point charge, 12 nC
at P (2, 0, 6); uniform line charge density, 3nC/m at x = −2, y = 3; uniform surface charge density,
0.2 nC/m2 at x = 2. The sum of the fields at the origin from each charge in order is:

E =
[
(12 × 10−9)

4πε0

(−2ax − 6az)
(4 + 36)1.5

]
+

[
(3 × 10−9)

2πε0

(2ax − 3ay)
(4 + 9)

]
−

[
(0.2 × 10−9)ax

2ε0

]
= −3.9ax − 12.4ay − 2.5az V/m
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2.26. An electric dipole (discussed in detail in Sec. 4.7) consists of two point charges of equal and opposite
magnitude ±Q spaced by distance d. With the charges along the z axis at positions z = ±d/2 (with
the positive charge at the positive z location), the electric field in spherical coordinates is given by
E(r, θ) =

[
Qd/(4πε0r

3)
]
[2 cos θar + sin θaθ], where r >> d. Using rectangular coordinates, determine

expressions for the vector force on a point charge of magnitude q:

a) at (0,0,z): Here, θ = 0, ar = az, and r = z. Therefore

F(0, 0, z) =
qQdaz

4πε0z3
N

b) at (0,y,0): Here, θ = 90◦, aθ = −az, and r = y. The force is

F(0, y, 0) =
−qQdaz

4πε0y3
N

2.27. Given the electric field E = (4x − 2y)ax − (2x + 4y)ay, find:
a) the equation of the streamline that passes through the point P (2, 3,−4): We write

dy

dx
=

Ey

Ex
=

−(2x + 4y)
(4x − 2y)

Thus
2(x dy + y dx) = y dy − x dx

or
2 d(xy) =

1
2

d(y2) − 1
2

d(x2)

So
C1 + 2xy =

1
2
y2 − 1

2
x2

or
y2 − x2 = 4xy + C2

Evaluating at P (2, 3,−4), obtain:

9 − 4 = 24 + C2, or C2 = −19

Finally, at P , the requested equation is

y2 − x2 = 4xy − 19

b) a unit vector specifying the direction of E at Q(3,−2, 5): Have EQ = [4(3) + 2(2)]ax − [2(3) −
4(2)]ay = 16ax + 2ay. Then |E| =

√
162 + 4 = 16.12 So

aQ =
16ax + 2ay

16.12
= 0.99ax + 0.12ay
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2.28 A field is given as E = 2xz2ax + 2z(x2 + 1)az. Find the equation of the streamline passing through
the point (1,3,-1):

dz

dx
=

Ez

Ex
=

x2 + 1
xz

⇒ zdz =
x2 + 1

x
dx ⇒ z2 = x2 + 2 lnx + C

At (1,3,-1), the expression is satisfied if C = 0. Therefore, the equation for the streamline is
z2 = x2 + 2 lnx.

2.29. If E = 20e−5y (cos 5xax − sin 5xay), find:
a) |E| at P (π/6, 0.1, 2): Substituting this point, we obtain EP = −10.6ax − 6.1ay, and so |EP | =

12.2.

b) a unit vector in the direction of EP : The unit vector associated with E is (cos 5xax − sin 5xay),
which evaluated at P becomes aE = −0.87ax − 0.50ay.

c) the equation of the direction line passing through P : Use

dy

dx
=

− sin 5x

cos 5x
= − tan 5x ⇒ dy = − tan 5x dx

Thus y = 1
5 ln cos 5x + C. Evaluating at P , we find C = 0.13, and so

y =
1
5

ln cos 5x + 0.13

2.30. For fields that do not vary with z in cylindrical coordinates, the equations of the streamlines are
obtained by solving the differential equation Eρ/Eφ = dρ(ρdφ). Find the equation of the line passing
through the point (2, 30◦, 0) for the field E = ρ cos 2φaρ − ρ sin 2φaφ:

Eρ

Eφ
=

dρ

ρdφ
=

−ρ cos 2φ

ρ sin 2φ
= − cot 2φ ⇒ dρ

ρ
= − cot 2φ dφ

Integrate to obtain

2 ln ρ = ln sin 2φ + lnC = ln
[

C

sin 2φ

]
⇒ ρ2 =

C

sin 2φ

At the given point, we have 4 = C/ sin(60◦) ⇒ C = 4 sin 60◦ = 2
√

3. Finally, the equation for
the streamline is ρ2 = 2

√
3/ sin 2φ.
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CHAPTER 3

3.1. An empty metal paint can is placed on a marble table, the lid is removed, and both parts are
discharged (honorably) by touching them to ground. An insulating nylon thread is glued to
the center of the lid, and a penny, a nickel, and a dime are glued to the thread so that they
are not touching each other. The penny is given a charge of +5 nC, and the nickel and dime
are discharged. The assembly is lowered into the can so that the coins hang clear of all walls,
and the lid is secured. The outside of the can is again touched momentarily to ground. The
device is carefully disassembled with insulating gloves and tools.

a) What charges are found on each of the five metallic pieces? All coins were insulated
during the entire procedure, so they will retain their original charges: Penny: +5nC;
nickel: 0; dime: 0. The penny’s charge will have induced an equal and opposite negative
charge (-5 nC) on the inside wall of the can and lid. This left a charge layer of +5 nC on
the outside surface which was neutralized by the ground connection. Therefore, the can
retained a net charge of −5 nC after disassembly.

b) If the penny had been given a charge of +5 nC, the dime a charge of −2 nC, and the nickel
a charge of −1 nC, what would the final charge arrangement have been? Again, since the
coins are insulated, they retain their original charges. The charge induced on the inside
wall of the can and lid is equal to negative the sum of the coin charges, or −2 nC. This
is the charge that the can/lid contraption retains after grounding and disassembly.

3.2. A point charge of 20 nC is located at (4,-1,3), and a uniform line charge of -25 nC/m is lies
along the intersection of the planes x = −4 and z = 6.

a) Calculate D at (3,-1,0):

The total flux density at the desired point is

D(3,−1, 0) =
20 × 10−9

4π(1 + 9)

[−ax − 3az√
1 + 9

]
︸ ︷︷ ︸

point charge

− 25 × 10−9

2π
√

49 + 36

[
7ax − 6az√

49 + 36

]
︸ ︷︷ ︸

line charge

= −0.38ax + 0.13az nC/m2

b) How much electric flux leaves the surface of a sphere of radius 5, centered at the origin?
This will be equivalent to how much charge lies within the sphere. First the point charge is
at distance from the origin given by Rp =

√
16 + 1 + 9 = 5.1, and so it is outside. Second,

the nearest point on the line charge to the origin is at distance R� =
√

16 + 36 = 7.2, and
so the entire line charge is also outside the sphere. Answer: zero.

c) Repeat part b if the radius of the sphere is 10.

First, from part b, the point charge will now lie inside. Second, the length of line
charge that lies inside the sphere will be given by 2y0, where y0 satisfies the equation,√

16 + y2
0 + 36 = 10. Solve to find y0 = 6.93, or 2y0 = 13.86. The total charge within the

sphere (and the net outward flux) is now

Φ = Qencl = [20 − (25 × 13.86)] = −326 nC

.

27



3.3. The cylindrical surface ρ = 8 cm contains the surface charge density, ρs = 5e−20|z| nC/m2.
a) What is the total amount of charge present? We integrate over the surface to find:

Q = 2
∫ ∞

0

∫ 2π

0

5e−20z(.08)dφ dz nC = 20π(.08)
(−1

20

)
e−20z

∣∣∣∣∣
∞

0

= 0.25 nC

b) How much flux leaves the surface ρ = 8 cm, 1 cm < z < 5cm, 30◦ < φ < 90◦? We just
integrate the charge density on that surface to find the flux that leaves it.

Φ = Q′ =
∫ .05

.01

∫ 90◦

30◦
5e−20z(.08) dφ dz nC =

(
90 − 30

360

)
2π(5)(.08)

(−1
20

)
e−20z

∣∣∣∣∣
.05

.01

= 9.45 × 10−3 nC = 9.45 pC

3.4. In cylindrical coordinates, let D = (ρaρ + zaz)/
[
4π(ρ2 + z2)1.5

]
. Determine the total flux

leaving:

a) the infinitely-long cylindrical surface ρ = 7: We use

Φa =
∫

D · dS =
∫ ∞

−∞

∫ 2π

0

ρ0 aρ + z az

4π(ρ2
0 + z2)3/2

· aρ ρ0 dφ dz = ρ2
0

∫ ∞

0

dz

(ρ2
0 + z2)3/2

=
z√

ρ2
0 + z2

∣∣∣∞
0

= 1

where ρ0 = 7 (immaterial in this case).

b) the finite cylinder, ρ = 7, |z| ≤ 10:

The total flux through the cylindrical surface and the two end caps are, in this order:

Φb =
∫ z0

−z0

∫ 2π

0

ρ0 aρ · aρ

4π(ρ2
0 + z2)3/2

ρ0 dφ dz

+
∫ 2π

0

∫ ρ0

0

z0 az · az

4π(ρ2 + z2
0)3/2

ρ dρ dφ +
∫ 2π

0

∫ ρ0

0

−z0 az · −az

4π(ρ2 + z2
0)3/2

ρ dρ dφ

where ρ0 = 7 and z0 = 10. Simplifying, this becomes

Φb = ρ2
0

∫ z0

0

dz

(ρ2
0 + z2)3/2

+ z0

∫ ρ0

0

ρ dρ

(ρ2 + z2
0)3/2

=
z√

ρ2
0 + z2

∣∣∣z0

0
− z0√

ρ2 + z2
0

∣∣∣ρ0

0
=

z0√
ρ2
0 + z2

0

+ 1 − z0√
ρ2
0 + z2

0

= 1

where again, the actual values of ρ0 and z0 (7 and 10) did not matter.

3.5. Let D = 4xyax + 2(x2 + z2)ay + 4yzaz C/m2 and evaluate surface integrals to find the total
charge enclosed in the rectangular parallelepiped 0 < x < 2, 0 < y < 3, 0 < z < 5 m: Of the 6
surfaces to consider, only 2 will contribute to the net outward flux. Why? First consider the
planes at y = 0 and 3. The y component of D will penetrate those surfaces, but will be inward
at y = 0 and outward at y = 3, while having the same magnitude in both cases. These fluxes
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will thus cancel. At the x = 0 plane, Dx = 0 and at the z = 0 plane, Dz = 0, so there will be
no flux contributions from these surfaces. This leaves the 2 remaining surfaces at x = 2 and
z = 5. The net outward flux becomes:

Φ =
∫ 5

0

∫ 3

0

D
∣∣
x=2

· ax dy dz +
∫ 3

0

∫ 2

0

D
∣∣
z=5

· az dx dy

= 5
∫ 3

0

4(2)y dy + 2
∫ 3

0

4(5)y dy = 360 C

3.6. In free space, volume charge of constant density ρv = ρ0 exists within the region −∞ < x < ∞,
−∞ < y < ∞, and −d/2 < z < d/2. Find D and E everywhere.

From the symmetry of the configuration, we surmise that the field will be everywhere
z-directed, and will be uniform with x and y at fixed z. For finding the field inside the
charge, an appropriate Gaussian surface will be that which encloses a rectangular region
defined by −1 < x < 1, −1 < y < 1, and |z| < d/2. The outward flux from this surface
will be limited to that through the two parallel surfaces at ±z:

Φin =
∮

D · dS = 2
∫ 1

−1

∫ 1

−1

Dz dxdy = Qencl =
∫ z

−z

∫ 1

−1

∫ 1

−1

ρ0 dxdydz′

where the factor of 2 in the second integral account for the equal fluxes through the
two surfaces. The above readily simplifies, as both Dz and ρ0 are constants, leading to
Din = ρ0z az C/m2 (|z| < d/2), and therefore Ein = (ρ0z/ε0)az V/m (|z| < d/2).

Outside the charge, the Gaussian surface is the same, except that the parallel boundaries
at ±z occur at |z| > d/2. As a result, the calculation is nearly the same as before, with
the only change being the limits on the total charge integral:

Φout =
∮

D · dS = 2
∫ 1

−1

∫ 1

−1

Dz dxdy = Qencl =
∫ d/2

−d/2

∫ 1

−1

∫ 1

−1

ρ0 dxdydz′

Solve for Dz to find the constant values:

Dout =
{

(ρ0d/2)az (z > d/2)
−(ρ0d/2)az (z < d/2)

C/m2 and Eout =
{

(ρ0d/2ε0)az (z > d/2)
−(ρ0d/2ε0)az (z < d/2)

V/m

3.7. Volume charge density is located in free space as ρv = 2e−1000r nC/m3 for 0 < r < 1 mm, and
ρv = 0 elsewhere.
a) Find the total charge enclosed by the spherical surface r = 1 mm: To find the charge we

integrate:

Q =
∫ 2π

0

∫ π

0

∫ .001

0

2e−1000rr2 sin θ dr dθ dφ

Integration over the angles gives a factor of 4π. The radial integration we evaluate using
tables; we obtain

Q = 8π

[−r2e−1000r

1000

∣∣∣.001
0

+
2

1000
e−1000r

(1000)2
(−1000r − 1)

∣∣∣.001
0

]
= 4.0 × 10−9 nC
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b) By using Gauss’s law, calculate the value of Dr on the surface r = 1 mm: The gaussian
surface is a spherical shell of radius 1 mm. The enclosed charge is the result of part a.
We thus write 4πr2Dr = Q, or

Dr =
Q

4πr2
=

4.0 × 10−9

4π(.001)2
= 3.2 × 10−4 nC/m2

3.8. Use Gauss’s law in integral form to show that an inverse distance field in spherical coordinates,
D = Aar/r, where A is a constant, requires every spherical shell of 1 m thickness to contain
4πA coulombs of charge. Does this indicate a continuous charge distribution? If so, find the
charge density variation with r.

The net outward flux of this field through a spherical surface of radius r is

Φ =
∮

D · dS =
∫ 2π

0

∫ π

0

A

r
ar · ar r2 sin θ dθ dφ = 4πAr = Qencl

We see from this that with every increase in r by one m, the enclosed charge increases
by 4πA (done). It is evident that the charge density is continuous, and we can find the
density indirectly by constructing the integral for the enclosed charge, in which we already
found the latter from Gauss’s law:

Qencl = 4πAr =
∫ 2π

0

∫ π

0

∫ r

0

ρ(r′) (r′)2 sin θ dr′ dθ dφ = 4π

∫ r

0

ρ(r′) (r′)2 dr′

To obtain the correct enclosed charge, the integrand must be ρ(r) = A/r2.

3.9. A uniform volume charge density of 80µC/m3 is present throughout the region 8 mm < r <
10 mm. Let ρv = 0 for 0 < r < 8 mm.
a) Find the total charge inside the spherical surface r = 10 mm: This will be

Q =
∫ 2π

0

∫ π

0

∫ .010

.008

(80 × 10−6)r2 sin θ dr dθ dφ = 4π × (80 × 10−6)
r3

3

∣∣∣.010
.008

= 1.64 × 10−10 C = 164 pC

b) Find Dr at r = 10 mm: Using a spherical gaussian surface at r = 10, Gauss’ law is
written as 4πr2Dr = Q = 164 × 10−12, or

Dr(10 mm) =
164 × 10−12

4π(.01)2
= 1.30 × 10−7 C/m2 = 130 nC/m2

c) If there is no charge for r > 10 mm, find Dr at r = 20 mm: This will be the same
computation as in part b, except the gaussian surface now lies at 20 mm. Thus

Dr(20 mm) =
164 × 10−12

4π(.02)2
= 3.25 × 10−8 C/m2 = 32.5 nC/m2

3.10. Volume charge density varies in spherical coordinates as ρv = (ρ0 sin πr)/r2, where ρ0 is a
constant. Find the surfaces on which D = 0.
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3.11. In cylindrical coordinates, let ρv = 0 for ρ < 1 mm, ρv = 2 sin(2000πρ) nC/m3 for 1 mm <
ρ < 1.5 mm, and ρv = 0 for ρ > 1.5 mm. Find D everywhere: Since the charge varies only
with radius, and is in the form of a cylinder, symmetry tells us that the flux density will be
radially-directed and will be constant over a cylindrical surface of a fixed radius. Gauss’ law
applied to such a surface of unit length in z gives:
a) for ρ < 1 mm, Dρ = 0, since no charge is enclosed by a cylindrical surface whose radius

lies within this range.

b) for 1 mm < ρ < 1.5 mm, we have

2πρDρ = 2π

∫ ρ

.001

2 × 10−9 sin(2000πρ′)ρ′ dρ′

= 4π × 10−9

[
1

(2000π)2
sin(2000πρ) − ρ

2000π
cos(2000πρ)

]ρ

.001

or finally,

Dρ =
10−15

2π2ρ

[
sin(2000πρ) + 2π

[
1 − 103ρ cos(2000πρ)

] ]
C/m2 (1 mm < ρ < 1.5 mm)
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3.11. (continued)
c) for ρ > 1.5 mm, the gaussian cylinder now lies at radius ρ outside the charge distribution,

so the integral that evaluates the enclosed charge now includes the entire charge distri-
bution. To accomplish this, we change the upper limit of the integral of part b from ρ to
1.5 mm, finally obtaining:

Dρ =
2.5 × 10−15

πρ
C/m2 (ρ > 1.5 mm)

3.12. The sun radiates a total power of about 2 × 1026 watts (W). If we imagine the sun’s surface
to be marked off in latitude and longitude and assume uniform radiation, (a) what power is
radiated by the region lying between latitude 50◦ N and 60◦ N and longitude 12◦ W and 27◦

W? (b) What is the power density on a spherical surface 93,000,000 miles from the sun in
W/m2?

3.13. Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20 nC/m2,
−4 nC/m2, and ρs0, respectively.
a) Find D at r = 1, 3 and 5 m: Noting that the charges are spherically-symmetric, we

ascertain that D will be radially-directed and will vary only with radius. Thus, we apply
Gauss’ law to spherical shells in the following regions: r < 2: Here, no charge is enclosed,
and so Dr = 0.

2 < r < 4 : 4πr2Dr = 4π(2)2(20 × 10−9) ⇒ Dr =
80 × 10−9

r2
C/m2

So Dr(r = 3) = 8.9 × 10−9 C/m2.

4 < r < 6 : 4πr2Dr = 4π(2)2(20 × 10−9) + 4π(4)2(−4 × 10−9) ⇒ Dr =
16 × 10−9

r2

So Dr(r = 5) = 6.4 × 10−10 C/m2.

b) Determine ρs0 such that D = 0 at r = 7 m. Since fields will decrease as 1/r2, the question
could be re-phrased to ask for ρs0 such that D = 0 at all points where r > 6 m. In this
region, the total field will be

Dr(r > 6) =
16 × 10−9

r2
+

ρs0(6)2

r2

Requiring this to be zero, we find ρs0 = −(4/9) × 10−9 C/m2.

3.14. The sun radiates a total power of about 2 × 1026 watts (W). If we imagine the sun’s surface
to be marked off in latitude and longitude and assume uniform radiation, (a) what power is
radiated by the region lying between latitude 50◦ N and 60◦ N and longitude 12◦ W and 27◦

W? (b) What is the power density on a spherical surface 93,000,000 miles from the sun in
W/m2?

3.15. Volume charge density is located as follows: ρv = 0 for ρ < 1 mm and for ρ > 2 mm,
ρv = 4ρ µC/m3 for 1 < ρ < 2 mm.
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a) Calculate the total charge in the region 0 < ρ < ρ1, 0 < z < L, where 1 < ρ1 < 2 mm:
We find

Q =
∫ L

0

∫ 2π

0

∫ ρ1

.001

4ρ ρ dρ dφ dz =
8πL

3
[ρ3

1 − 10−9] µC

where ρ1 is in meters.

b) Use Gauss’ law to determine Dρ at ρ = ρ1: Gauss’ law states that 2πρ1LDρ = Q, where
Q is the result of part a. Thus

Dρ(ρ1) =
4(ρ3

1 − 10−9)
3ρ1

µC/m2

where ρ1 is in meters.

c) Evaluate Dρ at ρ = 0.8 mm, 1.6 mm, and 2.4 mm: At ρ = 0.8 mm, no charge is enclosed
by a cylindrical gaussian surface of that radius, so Dρ(0.8mm) = 0. At ρ = 1.6 mm, we
evaluate the part b result at ρ1 = 1.6 to obtain:

Dρ(1.6mm) =
4[(.0016)3 − (.0010)3]

3(.0016)
= 3.6 × 10−6 µC/m2

At ρ = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss’ law is
written as

2πρLDρ =
8πL

3
[(.002)2 − (.001)2] µC

from which Dρ(2.4mm) = 3.9 × 10−6 µC/m2.

3.16. In spherical coordinates, a volume charge density ρv = 10e−2r C/m3 is present. (a) Determine
D. (b) Check your result of part a by evaluating ∇ · D.

3.17. A cube is defined by 1 < x, y, z < 1.2. If D = 2x2yax + 3x2y2ay C/m2:

a) apply Gauss’ law to find the total flux leaving the closed surface of the cube. We call the
surfaces at x = 1.2 and x = 1 the front and back surfaces respectively, those at y = 1.2
and y = 1 the right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom
surfaces. To evaluate the total charge, we integrate D · n over all six surfaces and sum
the results. We note that there is no z component of D, so there will be no outward flux
contributions from the top and bottom surfaces. The fluxes through the remaining four
are

Φ = Q =
∮

D · n da =
∫ 1.2

1

∫ 1.2

1

2(1.2)2y dy dz︸ ︷︷ ︸
front

+
∫ 1.2

1

∫ 1.2

1

−2(1)2y dy dz︸ ︷︷ ︸
back

+
∫ 1.2

1

∫ 1.2

1

−3x2(1)2 dx dz︸ ︷︷ ︸
left

+
∫ 1.2

1

∫ 1.2

1

3x2(1.2)2 dx dz︸ ︷︷ ︸
right

= 0.1028 C

b) evaluate ∇ · D at the center of the cube: This is

∇ · D =
[
4xy + 6x2y

]
(1.1,1.1)

= 4(1.1)2 + 6(1.1)3 = 12.83
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c) Estimate the total charge enclosed within the cube by using Eq. (8): This is

Q
.= ∇ · D

∣∣
center

× ∆v = 12.83 × (0.2)3 = 0.1026 Close!

3.18. State whether the divergence of the following vector fields is positive, negative, or zero: (a) the
thermal energy flow in J/(m2 − s) at any point in a freezing ice cube; (b) the current density
in A/m2 in a bus bar carrying direct current; (c) the mass flow rate in kg/(m2 − s) below the
surface of water in a basin, in which the water is circulating clockwise as viewed from above.

3.19. A spherical surface of radius 3 mm is centered at P (4, 1, 5) in free space. Let D = xax C/m2.
Use the results of Sec. 3.4 to estimate the net electric flux leaving the spherical surface: We
use Φ .= ∇ · D∆v, where in this case ∇ · D = (∂/∂x)x = 1 C/m3. Thus

Φ .=
4
3
π(.003)3(1) = 1.13 × 10−7 C = 113 nC

3.20. Suppose that an electric flux density in cylindrical coordinates is of the form D = Dρ aρ.
Describe the dependence of the charge density ρv on coordinates ρ, φ, and z if (a) Dρ = f(φ, z);
(b) Dρ = (1/ρ)f(φ, z); (c) Dρ = f(ρ).

3.21. Calculate the divergence of D at the point specified if
a) D = (1/z2)

[
10xyz ax + 5x2z ay + (2z3 − 5x2y)az

]
at P (−2, 3, 5): We find

∇ · D =
[
10y

z
+ 0 + 2 +

10x2y

z3

]
(−2,3,5)

= 8.96

b) D = 5z2aρ + 10ρz az at P (3,−45◦, 5): In cylindrical coordinates, we have

∇ · D =
1
ρ

∂

∂ρ
(ρDρ) +

1
ρ

∂Dφ

∂φ
+

∂Dz

∂z
=

[
5z2

ρ
+ 10ρ

]
(3,−45◦,5)

= 71.67

c) D = 2r sin θ sinφar + r cos θ sin φaθ + r cos φaφ at P (3, 45◦,−45◦): In spherical coordi-
nates, we have

∇ · D =
1
r2

∂

∂r
(r2Dr) +

1
r sin θ

∂

∂θ
(sin θDθ) +

1
r sin θ

∂Dφ

∂φ

=
[
6 sin θ sin φ +

cos 2θ sinφ

sin θ
− sin φ

sin θ

]
(3,45◦,−45◦)

= −2

3.22. (a) A flux density field is given as F1 = 5az. Evaluate the outward flux of F1 through the
hemispherical surface, r = a, 0 < θ < π/2, 0 < φ < 2π. (b) What simple observation would
have saved a lot of work in part a? (c) Now suppose the field is given by F2 = 5zaz. Using the
appropriate surface integrals, evaluate the net outward flux of F2 through the closed surface
consisting of the hemisphere of part a and its circular base in the xy plane. (d) Repeat part
c by using the divergence theorem and an appropriate volume integral.
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3.23. a) A point charge Q lies at the origin. Show that div D is zero everywhere except at the
origin. For a point charge at the origin we know that D = Q/(4πr2)ar. Using the formula
for divergence in spherical coordinates (see problem 3.21 solution), we find in this case that

∇ · D =
1
r2

d

dr

(
r2 Q

4πr2

)
= 0

The above is true provided r > 0. When r = 0, we have a singularity in D, so its divergence
is not defined.

b) Replace the point charge with a uniform volume charge density ρv0 for 0 < r < a. Relate
ρv0 to Q and a so that the total charge is the same. Find div D everywhere: To achieve
the same net charge, we require that (4/3)πa3ρv0 = Q, so ρv0 = 3Q/(4πa3) C/m3. Gauss’
law tells us that inside the charged sphere

4πr2Dr =
4
3
πr3ρv0 =

Qr3

a3

Thus

Dr =
Qr

4πa3
C/m2 and ∇ · D =

1
r2

d

dr

(
Qr3

4πa3

)
=

3Q

4πa3

as expected. Outside the charged sphere, D = Q/(4πr2)ar as before, and the divergence
is zero.

3.24. (a) A uniform line charge density ρL lies along the z axis. Show that ∇ · D = 0 everywhere
except on the line charge. (b) Replace the line charge with a uniform volume charge density
ρ0 for 0 < ρ < a. Relate ρ0 to ρL so that the charge per unit length is the same. Then find
∇ · D everywhere.

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as

D = 5(r − 3)3 ar C/m2

a) What is the volume charge density at r = 4? In this case we have

ρv = ∇ · D =
1
r2

d

dr
(r2Dr) =

5
r
(r − 3)2(5r − 6) C/m3

which we evaluate at r = 4 to find ρv(r = 4) = 17.50 C/m3.

b) What is the electric flux density at r = 4? Substitute r = 4 into the given expression to
find D(4) = 5ar C/m2

c) How much electric flux leaves the sphere r = 4? Using the result of part b, this will be
Φ = 4π(4)2(5) = 320π C

d) How much charge is contained within the sphere, r = 4? From Gauss’ law, this will be
the same as the outward flux, or again, Q = 320π C.

3.26. If we have a perfect gas of mass density ρm kg/m3, and assign a velocity U m/s to each
differential element, then the mass flow rate is ρmU kg/(m2 − s). Physical reasoning then
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leads to the continuity equation, ∇ · (ρmU) = −∂ρm/∂t. (a) Explain in words the physical
interpretation of this equation. (b) Show that

∮
s
ρmU · dS = −dM/dt, where M is the total

mass of the gas within the constant closed surface, S, and explain the physical significance of
the equation.

3.27. Let D = 5.00r2ar mC/m2 for r ≤ 0.08 m and D = 0.205ar/r2 µC/m2 for r ≥ 0.08 m (note
error in problem statement).
a) Find ρv for r = 0.06 m: This radius lies within the first region, and so

ρv = ∇ · D =
1
r2

d

dr
(r2Dr) =

1
r2

d

dr
(5.00r4) = 20r mC/m3

which when evaluated at r = 0.06 yields ρv(r = .06) = 1.20 mC/m3.

b) Find ρv for r = 0.1 m: This is in the region where the second field expression is valid.
The 1/r2 dependence of this field yields a zero divergence (shown in Problem 3.23), and
so the volume charge density is zero at 0.1 m.

c) What surface charge density could be located at r = 0.08 m to cause D = 0 for r > 0.08
m? The total surface charge should be equal and opposite to the total volume charge.
The latter is

Q =
∫ 2π

0

∫ π

0

∫ .08

0

20r(mC/m3) r2 sin θ dr dθ dφ = 2.57 × 10−3 mC = 2.57 µC

So now

ρs = −
[

2.57
4π(.08)2

]
= −32 µC/m2

3.28. Repeat Problem 3.8, but use ∇ · D = ρv and take an appropriate volume integral.

3.29. In the region of free space that includes the volume 2 < x, y, z < 3,

D =
2
z2

(yz ax + xz ay − 2xy az) C/m2

a) Evaluate the volume integral side of the divergence theorem for the volume defined above:
In cartesian, we find ∇ · D = 8xy/z3. The volume integral side is now

∫
vol

∇ · D dv =
∫ 3

2

∫ 3

2

∫ 3

2

8xy

z3
dxdydz = (9 − 4)(9 − 4)

(
1
4
− 1

9

)
= 3.47 C

b. Evaluate the surface integral side for the corresponding closed surface: We call the surfaces
at x = 3 and x = 2 the front and back surfaces respectively, those at y = 3 and y = 2
the right and left surfaces, and those at z = 3 and z = 2 the top and bottom surfaces.
To evaluate the surface integral side, we integrate D · n over all six surfaces and sum the
results. Note that since the x component of D does not vary with x, the outward fluxes
from the front and back surfaces will cancel each other. The same is true for the left
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and right surfaces, since Dy does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:

∮
D · dS =

∫ 3

2

∫ 3

2

−4xy

32
dxdy︸ ︷︷ ︸

top

−
∫ 3

2

∫ 3

2

−4xy

22
dxdy︸ ︷︷ ︸

bottom

= (9 − 4)(9 − 4)
(

1
4
− 1

9

)
= 3.47 C

3.30. Let D = 20ρ2 aρ C/m2. (a) What is the volume charge density at the point P (0.5, 60◦, 2)?
(b) Use two different methods to find the amount of charge lying within the closed surface
bounded by ρ = 3, 0 ≤ z ≤ 2.

3.31. Given the flux density

D =
16
r

cos(2θ)aθ C/m2,

use two different methods to find the total charge within the region 1 < r < 2 m, 1 < θ < 2
rad, 1 < φ < 2 rad: We use the divergence theorem and first evaluate the surface integral
side. We are evaluating the net outward flux through a curvilinear “cube”, whose boundaries
are defined by the specified ranges. The flux contributions will be only through the surfaces
of constant θ, however, since D has only a θ component. On a constant-theta surface, the
differential area is da = r sin θdrdφ, where θ is fixed at the surface location. Our flux integral
becomes

∮
D · dS = −

∫ 2

1

∫ 2

1

16
r

cos(2) r sin(1) drdφ︸ ︷︷ ︸
θ=1

+
∫ 2

1

∫ 2

1

16
r

cos(4) r sin(2) drdφ︸ ︷︷ ︸
θ=2

= −16 [cos(2) sin(1) − cos(4) sin(2)] = −3.91 C

We next evaluate the volume integral side of the divergence theorem, where in this case,

∇ · D =
1

r sin θ

d

dθ
(sin θ Dθ) =

1
r sin θ

d

dθ

[
16
r

cos 2θ sin θ

]
=

16
r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]

We now evaluate:
∫

vol

∇ · D dv =
∫ 2

1

∫ 2

1

∫ 2

1

16
r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]
r2 sin θ drdθdφ

The integral simplifies to

∫ 2

1

∫ 2

1

∫ 2

1

16[cos 2θ cos θ − 2 sin 2θ sin θ] drdθdφ = 8
∫ 2

1

[3 cos 3θ − cos θ] dθ = −3.91 C
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CHAPTER 4

4.1. The value of E at P (ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ − 200aφ + 300az V/m.
Determine the incremental work required to move a 20µC charge a distance of 6 µm:

a) in the direction of aρ: The incremental work is given by dW = −q E · dL, where in this
case, dL = dρaρ = 6 × 10−6 aρ. Thus

dW = −(20 × 10−6 C)(100 V/m)(6 × 10−6 m) = −12 × 10−9 J = −12 nJ

b) in the direction of aφ: In this case dL = 2 dφaφ = 6 × 10−6 aφ, and so

dW = −(20 × 10−6)(−200)(6 × 10−6) = 2.4 × 10−8 J = 24 nJ

c) in the direction of az: Here, dL = dz az = 6 × 10−6 az, and so

dW = −(20 × 10−6)(300)(6 × 10−6) = −3.6 × 10−8 J = −36 nJ

d) in the direction of E: Here, dL = 6 × 10−6 aE , where

aE =
100aρ − 200aφ + 300az

[1002 + 2002 + 3002]1/2
= 0.267aρ − 0.535aφ + 0.802az

Thus

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.267aρ − 0.535aφ + 0.802az](6 × 10−6)
= −44.9 nJ

e) In the direction of G = 2ax − 3ay + 4az: In this case, dL = 6 × 10−6 aG, where

aG =
2ax − 3ay + 4az

[22 + 32 + 42]1/2
= 0.371ax − 0.557ay + 0.743az

So now

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.371ax − 0.557ay + 0.743az](6 × 10−6)

= −(20 × 10−6) [37.1(aρ · ax) − 55.7(aρ · ay) − 74.2(aφ · ax) + 111.4(aφ · ay)

+ 222.9] (6 × 10−6)

where, at P , (aρ · ax) = (aφ · ay) = cos(40◦) = 0.766, (aρ · ay) = sin(40◦) = 0.643, and
(aφ · ax) = − sin(40◦) = −0.643. Substituting these results in

dW = −(20 × 10−6)[28.4 − 35.8 + 47.7 + 85.3 + 222.9](6 × 10−6) = −41.8 nJ
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4.2. An electric field is given as E = −10ey(sin 2z ax + x sin 2z ay + 2x cos 2z az) V/m.
a) Find E at P (5, 0, π/12): Substituting this point into the given field produces

EP = −10 [sin(π/6)ax + 5 sin(π/6)ay + 10 cos(π/6)az] = −
[
5ax + 25ay + 50

√
3az

]

b) How much work is done in moving a charge of 2 nC an incremental distance of 1 mm
from P in the direction of ax? This will be

dWx = −qE · dLax = −2 × 10−9(−5)(10−3) = 10−11 J = 10 pJ

c) of ay?
dWy = −qE · dLay = −2 × 10−9(−25)(10−3) = 50−11 J = 50 pJ

d) of az?
dWz = −qE · dLaz = −2 × 10−9(−50

√
3)(10−3) = 100

√
3 pJ

e) of (ax + ay + az)?

dWxyz = −qE · dL
ax + ay + az)√

3
=

10 + 50 + 100
√

3√
3

= 135 pJ

4.3. If E = 120aρ V/m, find the incremental amount of work done in moving a 50µm charge a
distance of 2 mm from:

a) P (1, 2, 3) toward Q(2, 1, 4): The vector along this direction will be Q − P = (1,−1, 1)
from which aPQ = [ax − ay + az]/

√
3. We now write

dW = −qE · dL = −(50 × 10−6)
[
120aρ · (ax − ay + az√

3

]
(2 × 10−3)

= −(50 × 10−6)(120) [(aρ · ax) − (aρ · ay)]
1√
3
(2 × 10−3)

At P , φ = tan−1(2/1) = 63.4◦. Thus (aρ · ax) = cos(63.4) = 0.447 and (aρ · ay) =
sin(63.4) = 0.894. Substituting these, we obtain dW = 3.1 µJ.

b) Q(2, 1, 4) toward P (1, 2, 3): A little thought is in order here: Note that the field has only
a radial component and does not depend on φ or z. Note also that P and Q are at the
same radius (

√
5) from the z axis, but have different φ and z coordinates. We could just

as well position the two points at the same z location and the problem would not change.
If this were so, then moving along a straight line between P and Q would thus involve
moving along a chord of a circle whose radius is

√
5. Halfway along this line is a point of

symmetry in the field (make a sketch to see this). This means that when starting from
either point, the initial force will be the same. Thus the answer is dW = 3.1 µJ as in part
a. This is also found by going through the same procedure as in part a, but with the
direction (roles of P and Q) reversed.
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4.4. It is found that the energy expended in carrying a charge of 4 µC from the origin to (x,0,0)
along the x axis is directly proportional to the square of the path length. If Ex = 7 V/m at
(1,0,0), determine Ex on the x axis as a function of x.

The work done is in general given by

W = −q

∫ x

0

Ex dx = Ax2

where A is a constant. Therefore Ex must be of the form Ex = E0x. At x = 1, Ex = 7,
so E0 = 7. Therefore Ex = 7x V/m. Note that with the positive-x-directed field, the
expended energy in moving the charge from 0 to x would be negative.

4.5. Compute the value of
∫ P

A
G · dL for G = 2yax with A(1,−1, 2) and P (2, 1, 2) using the path:

a) straight-line segments A(1,−1, 2) to B(1, 1, 2) to P (2, 1, 2): In general we would have∫ P

A

G · dL =
∫ P

A

2y dx

The change in x occurs when moving between B and P , during which y = 1. Thus∫ P

A

G · dL =
∫ P

B

2y dx =
∫ 2

1

2(1)dx = 2

b) straight-line segments A(1,−1, 2) to C(2,−1, 2) to P (2, 1, 2): In this case the change in
x occurs when moving from A to C, during which y = −1. Thus∫ P

A

G · dL =
∫ C

A

2y dx =
∫ 2

1

2(−1)dx = −2

4.6. Determine the work done in carrying a 2-µC charge from (2,1,-1) to (8,2,-1) in the field
E = yax + xay along
a) the parabola x = 2y2: As a look ahead, we can show (by taking its curl) that E is

conservative. We therefore expect the same answer for all three paths. The general
expression for the work is

W = −q

∫ B

A

E · dL = −q

[∫ 8

2

y dx +
∫ 2

1

x dy

]

In the present case, x = 2y2, and so y =
√

x/2. Substituting these and the charge, we
get

W1 = −2×10−6

[∫ 8

2

√
x/2 dx +

∫ 2

1

2y2 dy

]
= −2×10−6

[√
2

3
x3/2

∣∣∣8
2

+
2
3
y3

∣∣∣2
1

]
= −28 µJ

b) the hyperbola x = 8/(7 − 3y): We find y = 7/3 − 8/3x, and the work is

W2 = −2 × 10−6

[∫ 8

2

(
7
3
− 8

3x

)
dx +

∫ 2

1

8
7 − 3y

dy

]

= −2 × 10−6

[
7
3
(8 − 2) − 8

3
ln

(
8
2

)
− 8

3
ln(7 − 3y)

∣∣∣2
1

]
= −28 µJ
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4.6c. the straight line x = 6y − 4: Here, y = x/6 + 2/3, and the work is

W3 = −2 × 10−6

[∫ 8

2

(
x

6
+

2
3

)
dx +

∫ 2

1

(6y − 4) dy

]
= −28 µJ

4.7. Let G = 3xy3ax + 2zay. Given an initial point P (2, 1, 1) and a final point Q(4, 3, 1), find∫
G · dL using the path:

a) straight line: y = x − 1, z = 1: We obtain:∫
G · dL =

∫ 4

2

3xy2 dx +
∫ 3

1

2z dy =
∫ 4

2

3x(x − 1)2 dx +
∫ 3

1

2(1) dy = 90

b) parabola: 6y = x2 + 2, z = 1: We obtain:∫
G · dL =

∫ 4

2

3xy2 dx +
∫ 3

1

2z dy =
∫ 4

2

1
12

x(x2 + 2)2 dx +
∫ 3

1

2(1) dy = 82

4.8. Given E = −xax + yay, find the work involved in moving a unit positive charge on a circular
arc, the circle centered at the origin, from x = a to x = y = a/

√
2.

In moving along the arc, we start at φ = 0 and move to φ = π/4. The setup is

W = −q

∫
E · dL = −

∫ π/4

0

E · adφaφ = −
∫ π/4

0

(−x ax · aφ︸ ︷︷ ︸
− sin φ

+ y ay · aφ︸ ︷︷ ︸
cos φ

)a dφ

= −
∫ π/4

0

2a2 sinφ cos φ dφ = −
∫ π/4

0

a2 sin(2φ) dφ = −a2/2

where q = 1, x = a cos φ, and y = a sin φ.

Note that the field is conservative, so we would get the same result by integrating along
a two-segment path over x and y as shown:

W = −
∫

E · dL = −
[∫ a/

√
2

a

(−x) dx +
∫ a/

√
2

0

y dy

]
= −a2/2

4.9. A uniform surface charge density of 20 nC/m2 is present on the spherical surface r = 0.6 cm
in free space.

a) Find the absolute potential at P (r = 1 cm, θ = 25◦, φ = 50◦): Since the charge density
is uniform and is spherically-symmetric, the angular coordinates do not matter. The
potential function for r > 0.6 cm will be that of a point charge of Q = 4πa2ρs, or

V (r) =
4π(0.6 × 10−2)2(20 × 10−9)

4πε0r
=

0.081
r

V with r in meters

At r = 1 cm, this becomes V (r = 1 cm) = 8.14 V

45



b) Find VAB given points A(r = 2 cm, θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦):
Again, the angles do not matter because of the spherical symmetry. We use the part a
result to obtain

VAB = VA − VB = 0.081
[

1
0.02

− 1
0.03

]
= 1.36 V

4.10. Express the potential field of an infinite line charge

a) with zero reference at ρ = ρ0: We write in general:

V�(ρ) = −
∫

ρL

2πε0ρ
dρ + C1 = − ρL

2πε0
ln(ρ) + C1 = 0 at ρ = ρ0

Therefore
C1 =

ρL

2πε0
ln(ρ0)

and finally

V�(ρ) =
ρL

2πε0
[ln(ρ0) − ln(ρ)] =

ρL

2πε0
ln

(
ρ0

ρ

)

b) with V = V0 at ρ = ρ0: Using the reasoning of part a, we have

V�(ρ0) = V0 =
ρL

2πε0
ln(ρ0) + C2 ⇒ C2 = V0 +

ρL

2πε0
ln(ρ0)

and finally

V�(ρ) =
ρL

2πε0
ln

(
ρ0

ρ

)
+ V0

c) Can the zero reference be placed at infinity? Why? Answer: No, because we would have
a potential that is proportional to the undefined ln(∞/ρ).

4.11. Let a uniform surface charge density of 5 nC/m2 be present at the z = 0 plane, a uniform line
charge density of 8 nC/m be located at x = 0, z = 4, and a point charge of 2µC be present
at P (2, 0, 0). If V = 0 at M(0, 0, 5), find V at N(1, 2, 3): We need to find a potential function
for the combined charges which is zero at M . That for the point charge we know to be

Vp(r) =
Q

4πε0r

Potential functions for the sheet and line charges can be found by taking indefinite integrals
of the electric fields for those distributions. For the line charge, we have

Vl(ρ) = −
∫

ρl

2πε0ρ
dρ + C1 = − ρl

2πε0
ln(ρ) + C1

For the sheet charge, we have

Vs(z) = −
∫

ρs

2ε0
dz + C2 = − ρs

2ε0
z + C2
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The total potential function will be the sum of the three. Combining the integration constants,
we obtain:

V =
Q

4πε0r
− ρl

2πε0
ln(ρ) − ρs

2ε0
z + C

The terms in this expression are not referenced to a common origin, since the charges are at
different positions. The parameters r, ρ, and z are scalar distances from the charges, and will
be treated as such here. To evaluate the constant, C, we first look at point M , where VT = 0.
At M , r =

√
22 + 52 =

√
29, ρ = 1, and z = 5. We thus have

0 =
2 × 10−6

4πε0
√

29
− 8 × 10−9

2πε0
ln(1) − 5 × 10−9

2ε0
5 + C ⇒ C = −1.93 × 103 V

At point N , r =
√

1 + 4 + 9 =
√

14, ρ =
√

2, and z = 3. The potential at N is thus

VN =
2 × 10−6

4πε0
√

14
− 8 × 10−9

2πε0
ln(

√
2) − 5 × 10−9

2ε0
(3) − 1.93 × 103 = 1.98 × 103 V = 1.98 kV

4.12. In spherical coordinates, E = 2r/(r2 + a2)2 ar V/m. Find the potential at any point, using
the reference

a) V = 0 at infinity: We write in general

V (r) = −
∫

2r dr

(r2 + a2)2
+ C =

1
r2 + a2

+ C

With a zero reference at r → ∞, C = 0 and therefore V (r) = 1/(r2 + a2).

b) V = 0 at r = 0: Using the general expression, we find

V (0) =
1
a2

+ C = 0 ⇒ C = − 1
a2

Therefore

V (r) =
1

r2 + a2
− 1

a2
=

−r2

a2(r2 + a2)

c) V = 100V at r = a: Here, we find

V (a) =
1

2a2
+ C = 100 ⇒ C = 100 − 1

2a2

Therefore

V (r) =
1

r2 + a2
− 1

2a2
+ 100 =

a2 − r2

2a2(r2 + a2)
+ 100

4.13. Three identical point charges of 4 pC each are located at the corners of an equilateral triangle
0.5 mm on a side in free space. How much work must be done to move one charge to a point
equidistant from the other two and on the line joining them? This will be the magnitude of
the charge times the potential difference between the finishing and starting positions, or

W =
(4 × 10−12)2

2πε0

[
1

2.5
− 1

5

]
× 104 = 5.76 × 10−10 J = 576 pJ
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4.14. Given the electric field E = (y + 1)ax + (x− 1)ay + 2az, find the potential difference between
the points
a) (2,-2,-1) and (0,0,0): We choose a path along which motion occurs in one coordinate

direction at a time. Starting at the origin, first move along x from 0 to 2, where y = 0;
then along y from 0 to −2, where x is 2; then along z from 0 to −1. The setup is

Vb − Va = −
∫ 2

0

(y + 1)
∣∣∣
y=0

dx −
∫ −2

0

(x − 1)
∣∣∣
x=2

dy −
∫ −1

0

2 dz = 2

b) (3,2,-1) and (-2,-3,4): Following similar reasoning,

Vb − Va = −
∫ 3

−2

(y + 1)
∣∣∣
y=−3

dx −
∫ 2

−3

(x − 1)
∣∣∣
x=3

dy −
∫ −1

4

2 dz = 10

4.15. Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at x = −1, y = 2
in free space. If the potential at the origin is 100 V, find V at P (4, 1, 3): The net potential
function for the two charges would in general be:

V = − ρl

2πε0
ln(R1) −

ρl

2πε0
ln(R2) + C

At the origin, R1 = R2 =
√

5, and V = 100 V. Thus, with ρl = 8 × 10−9,

100 = −2
(8 × 10−9)

2πε0
ln(

√
5) + C ⇒ C = 331.6 V

At P (4, 1, 3), R1 = |(4, 1, 3)−(1, 1, 2)| =
√

10 and R2 = |(4, 1, 3)−(−1, 2, 3)| =
√

26. Therefore

VP = − (8 × 10−9)
2πε0

[
ln(

√
10) + ln(

√
26)

]
+ 331.6 = −68.4 V

4.16. The potential at any point in space is given in cylindrical coordinates by V = (k/ρ2) cos(bφ)
V/m, where k and b are constants.

a) Where is the zero reference for potential? This will occur at ρ → ∞, or whenever
cos(bφ) = 0, which gives φ = (2m − 1)π/2b, where m = 1, 2, 3...

b) Find the vector electric field intensity at any point (ρ, φ, z). We use

E(ρ, φ, z) = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ =

k

ρ3
[2 cos(bφ)aρ + b sin(bφ)aφ]

4.17. Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and 6 cm respectively,
in free space. Assume V = 0 at ρ = 4 cm, and calculate V at:

a) ρ = 5 cm: Since V = 0 at 4 cm, the potential at 5 cm will be the potential difference
between points 5 and 4:

V5 = −
∫ 5

4

E · dL = −
∫ 5

4

aρsa

ε0ρ
dρ = − (.02)(6 × 10−9)

ε0
ln

(
5
4

)
= −3.026 V
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b) ρ = 7 cm: Here we integrate piecewise from ρ = 4 to ρ = 7:

V7 = −
∫ 6

4

aρsa

ε0ρ
dρ −

∫ 7

6

(aρsa + bρsb)
ε0ρ

dρ

With the given values, this becomes

V7 = −
[
(.02)(6 × 10−9)

ε0

]
ln

(
6
4

)
−

[
(.02)(6 × 10−9) + (.06)(2 × 10−9)

ε0

]
ln

(
7
6

)
= −9.678 V

4.18. Find the potential at the origin produced by a line charge ρL = kx/(x2 + a2) extending along
the x axis from x = a to +∞, where a > 0. Assume a zero reference at infinity.

Think of the line charge as an array of point charges, each of charge dq = ρLdx, and each
having potential at the origin of dV = ρLdx/(4πε0x). The total potential at the origin is
then the sum of all these potentials, or

V =
∫ ∞

a

ρL dx

4πε0x
=

∫ ∞

a

k dx

4πε0(x2 + a2)
=

k

4πε0a
tan−1

(x

a

)∞

a
=

k

4πε0a

[π

2
− π

4

]
=

k

16ε0a

4.19. The annular surface, 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface charge density
ρs = 5ρ nC/m2. Find V at P (0, 0, 2 cm) if V = 0 at infinity: We use the superposition integral
form:

VP =
∫ ∫

ρs da

4πε0|r − r′|
where r = zaz and r′ = ρaρ. We integrate over the surface of the annular region, with
da = ρ dρ dφ. Substituting the given values, we find

VP =
∫ 2π

0

∫ .03

.01

(5 × 10−9)ρ2 dρ dφ

4πε0
√

ρ2 + z2

Substituting z = .02, and using tables, the integral evaluates as

VP =
[
(5 × 10−9)

2ε0

] [
ρ

2

√
ρ2 + (.02)2 − (.02)2

2
ln(ρ +

√
ρ2 + (.02)2)

].03

.01

= .081 V

4.20. A point charge Q is located at the origin. Express the potential in both rectangular and
cylindrical coordinates, and use the gradient operation in that coordinate system to find the
electric field intensity. The result may be checked by conversion to spherical coordinates.

The potential is expressed in spherical, rectangular, and cylindrical coordinates respec-
tively as:

V =
Q

4πε0r2
=

Q

4πε0(x2 + y2 + z2)1/2
=

Q

4πε0(ρ2 + z2)1/2

Now, working with rectangular coordinates

E = −∇V = −∂V

∂x
ax − ∂V

∂y
ay − ∂V

∂z
az =

Q

4πε0

[
xax + y ay + z az

(x2 + y2 + z2)3/2

]

49



4.20. (continued)
Now, converting this field to spherical components, we find

Er = E · ar =
Q

4πε0

[
r sin θ cos φ(ax · ar) + r sin θ sin φ(ay · ar) + r cos θ(az · ar)

r3

]

=
Q

4πε0

[
sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ

r2

]
=

Q

4πε0r2

Continuing:

Eθ = E · aθ =
Q

4πε0

[
r sin θ cos φ(ax · aθ) + r sin θ sin φ(ay · aθ) + r cos θ(az · aθ)

r3

]

=
Q

4πε0

[
sin θ cos θ cos2 φ + sin θ cos θ sin2 φ − cos θ sin θ

r2

]
= 0

Finally

Eφ = E · aφ =
Q

4πε0

[
r sin θ cos φ(ax · aφ) + r sin θ sin φ(ay · aφ) + r cos θ(az · aφ)

r3

]

=
Q

4πε0

[
sin θ cos φ(− sin φ) + sin θ sin φ cos φ + 0

r2

]
= 0 check

Now, in cylindrical we have in this case

E = −∇V = −∂V

∂ρ
aρ − ∂V

∂z
az =

Q

4πε0

[
ρaρ + z az

(ρ2 + z2)3/2

]
Converting to spherical components, we find

Er =
Q

4πε0

[
r sin θ(aρ · ar) + r cos θ(az · ar)

r3

]
=

Q

4πε0

[
sin2 θ + cos2 θ

r2

]
=

Q

4πε0r2

Eθ =
Q

4πε0

[
r sin θ(aρ · aθ) + r cos θ(az · aθ)

r3

]
=

Q

4πε0

[
sin θ cos θ + cos θ(− sin θ)

r2

]
= 0

Eφ =
Q

4πε0

[
r sin θ(aρ · aφ) + r cos θ(az · aφ)

r3

]
= 0 check

4.21. Let V = 2xy2z3+3 ln(x2+2y2+3z2) V in free space. Evaluate each of the following quantities
at P (3, 2,−1):

a) V : Substitute P directly to obtain: V = −15.0 V
b) |V |. This will be just 15.0 V.
c) E: We have

E
∣∣∣
P

= −∇V
∣∣∣
P

= −
[(

2y2z3 +
6x

x2 + 2y2 + 3z2

)
ax +

(
4xyz3 +

12y

x2 + 2y2 + 3z2

)
ay

+
(

6xy2z2 +
18z

x2 + 2y2 + 3z2

)
az

]
P

= 7.1ax + 22.8ay − 71.1az V/m
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4.21d) |E|P : taking the magnitude of the part c result, we find |E|P = 75.0 V/m.

e) aN : By definition, this will be

aN

∣∣∣
P

= − E
|E| = −0.095ax − 0.304ay + 0.948az

f) D: This is D
∣∣∣
P

= ε0E
∣∣∣
P

= 62.8ax + 202ay − 629az pC/m2.

4.22. A certain potential field is given in spherical coordinates by V = V0(r/a) sin θ. Find the total
charge contained within the region r < a: We first find the electric field through

E = −∇V = −∂V

∂r
ar −

1
r

∂V

∂θ
= −V0

a
[sin θ ar + cos θ aθ]

The requested charge is now the net outward flux of D = ε0E through the spherical shell of
radius a (with outward normal ar):

Q =
∫

S

D · dS =
∫ 2π

0

∫ π

0

ε0E · ar a2 sin θ dθ dφ = −2πaV0ε0

∫ π

0

sin2 θ dθ = −π2aε0V0 C

The same result can be found (as expected) by taking the divergence of D and integrating
over the spherical volume:

∇ · D = − 1
r2

∂

∂r

(
r2 ε0V0

a
sin θ

)
− 1

r sin θ

∂

∂θ

(
ε0V0

a
cos θ sin θ

)
= −ε0V0

ra

[
2 sin θ +

cos(2θ)
sin θ

]

= − ε0V0

ra sin θ

[
2 sin2 θ + 1 − 2 sin2 θ

]
=

−ε0V0

ra sin θ
= ρv

Now

Q =
∫ 2π

0

∫ π

0

∫ a

0

−ε0V0

ra sin θ
r2 sin θ dr dθ dφ =

−2π2ε0V0

a

∫ a

0

r dr = −π2aε0V0 C

4.23. It is known that the potential is given as V = 80ρ.6 V. Assuming free space conditions, find:

a) E: We find this through

E = −∇V = −dV

dρ
aρ = −48ρ−.4 V/m

b) the volume charge density at ρ = .5 m: Using D = ε0E, we find the charge density
through

ρv

∣∣∣
.5

= [∇ · D].5 =
(

1
ρ

)
d

dρ
(ρDρ)

∣∣∣
.5

= −28.8ε0ρ
−1.4

∣∣∣
.5

= −673 pC/m3

c) the total charge lying within the closed surface ρ = .6, 0 < z < 1: The easiest way to do
this calculation is to evaluate Dρ at ρ = .6 (noting that it is constant), and then multiply
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by the cylinder area: Using part a, we have Dρ

∣∣∣
.6

= −48ε0(.6)−.4 = −521 pC/m2. Thus

Q = −2π(.6)(1)521 × 10−12 C = −1.96 nC.

4.24. The surface defined by the equation x3 + y2 + z = 1000, where x, y, and z are positive, is an
equipotential surface on which the potential is 200 V. If |E| = 50 V/m at the point P (7, 25, 32)
on the surface, find E there:

First, the potential function will be of the form V (x, y, z) = C1(x3 + y2 + z) + C2, where
C1 and C2 are constants to be determined (C2 is in fact irrelevant for our purposes). The
electric field is now

E = −∇V = −C1(3x2 ax + 2y ay + az)

And the magnitude of E is |E| = C1

√
9x4 + 4y2 + 1, which at the given point will be

|E|P = C1

√
9(7)4 + 4(25)2 + 1 = 155.27C1 = 50 ⇒ C1 = 0.322

Now substitute C1 and the given point into the expression for E to obtain

EP = −(47.34ax + 16.10ay + 0.32az)

The other constant, C2, is needed to assure a potential of 200 V at the given point.

4.25. Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 + 50ρ + 150ρ sinφ V.
a) Find V , E, D, and ρv at P (1, 60◦, 0.5) in free space: First, substituting the given point,

we find VP = 279.9 V. Then,

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ = − [50 + 150 sinφ]aρ − [150 cos φ]aφ

Evaluate the above at P to find EP = −179.9aρ − 75.0aφ V/m

Now D = ε0E, so DP = −1.59aρ − .664aφ nC/m2. Then

ρv = ∇·D =
(

1
ρ

)
d

dρ
(ρDρ)+

1
ρ

∂Dφ

∂φ
=

[
−1

ρ
(50 + 150 sinφ) +

1
ρ
150 sinφ

]
ε0 = −50

ρ
ε0 C

At P , this is ρvP = −443 pC/m3.

b) How much charge lies within the cylinder? We will integrate ρv over the volume to obtain:

Q =
∫ 1

0

∫ 2π

0

∫ 2

0

−50ε0
ρ

ρ dρ dφ dz = −2π(50)ε0(2) = −5.56 nC
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4.26. Let us assume that we have a very thin, square, imperfectly conducting plate 2m on a side,
located in the plane z = 0 with one corner at the origin such that it lies entirely within the
first quadrant. The potential at any point in the plate is given as V = −e−x sin y.

a) An electron enters the plate at x = 0, y = π/3 with zero initial velocity; in what direction
is its initial movement? We first find the electric field associated with the given potential:

E = −∇V = −e−x[sin y ax − cos y ay]

Since we have an electron, its motion is opposite that of the field, so the direction on
entry is that of −E at (0, π/3), or

√
3/2ax − 1/2ay.

b) Because of collisions with the particles in the plate, the electron achieves a relatively low
velocity and little acceleration (the work that the field does on it is converted largely into
heat). The electron therefore moves approximately along a streamline. Where does it
leave the plate and in what direction is it moving at the time? Considering the result
of part a, we would expect the exit to occur along the bottom edge of the plate. The
equation of the streamline is found through

Ey

Ex
=

dy

dx
= −cos y

sin y
⇒ x = −

∫
tan y dy + C = ln(cos y) + C

At the entry point (0, π/3), we have 0 = ln[cos(π/3)] + C, from which C = 0.69. Now,
along the bottom edge (y = 0), we find x = 0.69, and so the exit point is (0.69, 0). From
the field expression evaluated at the exit point, we find the direction on exit to be −ay.

4.27. Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0,−0.1), are in free space.
a) Calculate V at P (0.3, 0, 0.4): Use

VP =
q

4πε0|R+| −
q

4πε0|R−|

where R+ = (.3, 0, .3) and R− = (.3, 0, .5), so that |R+| = 0.424 and |R−| = 0.583. Thus

VP =
10−9

4πε0

[
1

.424
− 1

.583

]
= 5.78 V

b) Calculate |E| at P : Use

EP =
q(.3ax + .3az)
4πε0(.424)3

− q(.3ax + .5az)
4πε0(.583)3

=
10−9

4πε0
[2.42ax + 1.41az] V/m

Taking the magnitude of the above, we find |EP | = 25.2 V/m.

c) Now treat the two charges as a dipole at the origin and find V at P : In spherical coor-
dinates, P is located at r =

√
.32 + .42 = .5 and θ = sin−1(.3/.5) = 36.9◦. Assuming a

dipole in far-field, we have

VP =
qd cos θ

4πε0r2
=

10−9(.2) cos(36.9◦)
4πε0(.5)2

= 5.76 V
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4.28. Use the electric field intensity of the dipole (Sec. 4.7, Eq. (36)) to find the difference in
potential between points at θa and θb, each point having the same r and φ coordinates. Under
what conditions does the answer agree with Eq. (34), for the potential at θa?

We perform a line integral of Eq. (36) along an arc of constant r and φ:

Vab = −
∫ θa

θb

qd

4πε0r3
[2 cos θ ar + sin θ aθ] · aθ r dθ = −

∫ θa

θb

qd

4πε0r2
sin θ dθ

=
qd

4πε0r2
[cos θa − cos θb]

This result agrees with Eq. (34) if θa (the ending point in the path) is 90◦ (the xy plane).
Under this condition, we note that if θb > 90◦, positive work is done when moving (against
the field) to the xy plane; if θb < 90◦, negative work is done since we move with the field.

4.29. A dipole having a moment p = 3ax −5ay +10az nC · m is located at Q(1, 2,−4) in free space.
Find V at P (2, 3, 4): We use the general expression for the potential in the far field:

V =
p · (r − r′)

4πε0|r − r′|3

where r − r′ = P − Q = (1, 1, 8). So

VP =
(3ax − 5ay + 10az) · (ax + ay + 8az) × 10−9

4πε0[12 + 12 + 82]1.5
= 1.31 V

4.30. A dipole for which p = 10ε0 az C · m is located at the origin. What is the equation of the
surface on which Ez = 0 but E �= 0?

First we find the z component:

Ez = E · az =
10

4πr3
[2 cos θ (ar · az) + sin θ (aθ · az)] =

5
2πr3

[
2 cos2 θ − sin2 θ

]
This will be zero when

[
2 cos2 θ − sin2 θ

]
= 0. Using identities, we write

2 cos2 θ − sin2 θ =
1
2
[1 + 3 cos(2θ)]

The above becomes zero on the cone surfaces, θ = 54.7◦ and θ = 125.3◦.

4.31. A potential field in free space is expressed as V = 20/(xyz) V.

a) Find the total energy stored within the cube 1 < x, y, z < 2. We integrate the energy
density over the cube volume, where wE = (1/2)ε0E · E, and where

E = −∇V = 20
[

1
x2yz

ax +
1

xy2z
ay +

1
xyz2

az

]
V/m

The energy is now

WE = 200ε0

∫ 2

1

∫ 2

1

∫ 2

1

[
1

x4y2z2
+

1
x2y4z2

+
1

x2y2z4

]
dx dy dz
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4.31a. (continued)

The integral evaluates as follows:

WE = 200ε0

∫ 2

1

∫ 2

1

[
−

(
1
3

)
1

x3y2z2
− 1

xy4z2
− 1

xy2z4

]2

1

dy dz

= 200ε0

∫ 2

1

∫ 2

1

[(
7
24

)
1

y2z2
+

(
1
2

)
1

y4z2
+

(
1
2

)
1

y2z4

]
dy dz

= 200ε0

∫ 2

1

[
−

(
7
24

)
1

yz2
−

(
1
6

)
1

y3z2
−

(
1
2

)
1

yz4

]2

1

dz

= 200ε0

∫ 2

1

[(
7
48

)
1
z2

+
(

7
48

)
1
z2

+
(

1
4

)
1
z4

]
dz

= 200ε0(3)
[

7
96

]
= 387 pJ

b) What value would be obtained by assuming a uniform energy density equal to the value
at the center of the cube? At C(1.5, 1.5, 1.5) the energy density is

wE = 200ε0(3)
[

1
(1.5)4(1.5)2(1.5)2

]
= 2.07 × 10−10 J/m3

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

4.32. Using Eq. (36), a) find the energy stored in the dipole field in the region r > a:

We start with
E(r, θ) =

qd

4πε0r3
[2 cos θ ar + sin θ aθ]

Then the energy will be

We =
∫

vol

1
2
ε0E · E dv =

∫ 2π

0

∫ π

0

∫ ∞

a

(qd)2

32π2ε0r6

[
4 cos2 θ + sin2 θ

]︸ ︷︷ ︸
3 cos2 θ+1

r2 sin θ dr dθ dφ

=
−2π(qd)2

32π2ε0

1
3r3

∣∣∣∞
a

∫ π

0

[
3 cos2 θ + 1

]
sin θ dθ =

(qd)2

48π2ε0a3

[
− cos3 θ − cos θ

]π

0︸ ︷︷ ︸
4

=
(qd)2

12πε0a3
J

b) Why can we not let a approach zero as a limit? From the above result, a singularity in the
energy occurs as a → 0. More importantly, a cannot be too small, or the original far-field
assumption used to derive Eq. (36) (a >> d) will not hold, and so the field expression
will not be valid.

4.33. A copper sphere of radius 4 cm carries a uniformly-distributed total charge of 5µC in free
space.
a) Use Gauss’ law to find D external to the sphere: with a spherical Gaussian surface at

radius r, D will be the total charge divided by the area of this sphere, and will be ar-
directed. Thus

D =
Q

4πr2
ar =

5 × 10−6

4πr2
ar C/m2
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4.33b) Calculate the total energy stored in the electrostatic field: Use

WE =
∫

vol

1
2
D · E dv =

∫ 2π

0

∫ π

0

∫ ∞

.04

1
2

(5 × 10−6)2

16π2ε0r4
r2 sin θ dr dθ dφ

= (4π)
(

1
2

)
(5 × 10−6)2

16π2ε0

∫ ∞

.04

dr

r2
=

25 × 10−12

8πε0

1
.04

= 2.81 J

c) Use WE = Q2/(2C) to calculate the capacitance of the isolated sphere: We have

C =
Q2

2WE
=

(5 × 10−6)2

2(2.81)
= 4.45 × 10−12 F = 4.45 pF

4.34. A sphere of radius a contains volume charge of uniform density ρ0 C/m3. Find the total stored
energy by applying

a) Eq. (43): We first need the potential everywhere inside the sphere. The electric field
inside and outside is readily found from Gauss’s law:

E1 =
ρ0r

3ε0
ar r ≤ a and E2 =

ρ0a
3

3ε0r2
ar r ≥ a

The potential at position r inside the sphere is now the work done in moving a unit
positive point charge from infinity to position r:

V (r) = −
∫ a

∞
E2 · ar dr −

∫ r

a

E1 · ar dr′ = −
∫ a

∞

ρ0a
3

3ε0r2
dr −

∫ r

a

ρ0r
′

3ε0
dr′ =

ρ0

6ε0

(
3a2 − r2

)
Now, using this result in (43) leads to the energy associated with the charge in the sphere:

We =
1
2

∫ 2π

0

∫ π

0

∫ a

0

ρ2
0

6ε0

(
3a2 − r2

)
r2 sin θ dr dθ dφ =

πρ0

3ε0

∫ a

0

(
3a2r2 − r4

)
dr =

4πa5ρ2
0

15ε0

b) Eq. (45): Using the given fields we find the energy densities

we1 =
1
2
ε0E1 · E1 =

ρ2
0r

2

18ε0
r ≤ a and we2 =

1
2
ε0E2 · E2 =

ρ2
0a

6

18ε0r4
r ≥ a

We now integrate these over their respective volumes to find the total energy:

We =
∫ 2π

0

∫ π

0

∫ a

0

ρ2
0r

2

18ε0
r2 sin θ dr dθ dφ +

∫ 2π

0

∫ π

0

∫ ∞

a

ρ2
0a

6

18ε0r4
r2 sin θ dr dθ dφ =

4πa5ρ2
0

15ε0
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4.35. Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side.
a) Find the total potential energy stored: This will be given by

WE =
1
2

4∑
n=1

qnVn

where Vn in this case is the potential at the location of any one of the point charges that
arises from the other three. This will be (for charge 1)

V1 = V21 + V31 + V41 =
q

4πε0

[
1

.04
+

1
.04

+
1

.04
√

2

]

Taking the summation produces a factor of 4, since the situation is the same at all four
points. Consequently,

WE =
1
2
(4)q1V1 =

(.8 × 10−9)2

2πε0(.04)

[
2 +

1√
2

]
= 7.79 × 10−7 J = 0.779 µJ

b) A fifth 0.8 nC charge is installed at the center of the square. Again find the total stored
energy: This will be the energy found in part a plus the amount of work done in moving
the fifth charge into position from infinity. The latter is just the potential at the square
center arising from the original four charges, times the new charge value, or

∆WE =
4(.8 × 10−9)2

4πε0(.04
√

2/2)
= .813 µJ

The total energy is now

WE net = WE(part a) + ∆WE = .779 + .813 = 1.59 µJ
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CHAPTER 5

5.1. Given the current density J = −104[sin(2x)e−2yax + cos(2x)e−2yay] kA/m2:

a) Find the total current crossing the plane y = 1 in the ay direction in the region 0 < x < 1,
0 < z < 2: This is found through

I =
∫ ∫

S

J · n
∣∣∣
S
da =

∫ 2

0

∫ 1

0

J · ay

∣∣∣
y=1

dx dz =
∫ 2

0

∫ 1

0

−104 cos(2x)e−2 dx dz

= −104(2)
1
2

sin(2x)
∣∣∣1
0
e−2 = −1.23 MA

b) Find the total current leaving the region 0 < x, x < 1, 2 < z < 3 by integrating J ·dS over
the surface of the cube: Note first that current through the top and bottom surfaces will
not exist, since J has no z component. Also note that there will be no current through the
x = 0 plane, since Jx = 0 there. Current will pass through the three remaining surfaces,
and will be found through

I =
∫ 3

2

∫ 1

0

J · (−ay)
∣∣∣
y=0

dx dz +
∫ 3

2

∫ 1

0

J · (ay)
∣∣∣
y=1

dx dz +
∫ 3

2

∫ 1

0

J · (ax)
∣∣∣
x=1

dy dz

= 104

∫ 3

2

∫ 1

0

[
cos(2x)e−0 − cos(2x)e−2

]
dx dz − 104

∫ 3

2

∫ 1

0

sin(2)e−2y dy dz

= 104

(
1
2

)
sin(2x)

∣∣∣1
0
(3 − 2)

[
1 − e−2

]
+ 104

(
1
2

)
sin(2)e−2y

∣∣∣1
0
(3 − 2) = 0

c) Repeat part b, but use the divergence theorem: We find the net outward current through
the surface of the cube by integrating the divergence of J over the cube volume. We have

∇ · J =
∂Jx

∂x
+

∂Jy

∂y
= −10−4

[
2 cos(2x)e−2y − 2 cos(2x)e−2y

]
= 0 as expected

5.2. A certain current density is given in cylindrical coordinates as J = 100e−2z(ρaρ + az) A/m2.
Find the total current passing through each of these surfaces:
a) z = 0, 0 ≤ ρ ≤ 1, in the az direction:

Ia =
∫

S

J · dS =
∫ 2π

0

∫ 1

0

100e−2(0)(ρaρ + az) · az ρ dρ dφ = 100π

where aρ · az = 0.

b) z = 1, 0 ≤ ρ ≤ 1, in the az direction:

Ib =
∫

S

J · dS =
∫ 2π

0

∫ 1

0

100e−2(1)(ρaρ + az) · az ρ dρ dφ = 100πe−2

c) closed cylinder defined by 0 ≤ z ≤ 1, 0 ≤ ρ ≤ 1, in an outward direction:

IT = Ib−Ia+
∫ 1

0

∫ 2π

0

100e−2z( (1)aρ+az)·aρ (1) dφ dz = 100π(e−2−1)+100π(1−e−2) = 0

1



5.3. Let
J =

400 sin θ

r2 + 4
ar A/m2

a) Find the total current flowing through that portion of the spherical surface r = 0.8,
bounded by 0.1π < θ < 0.3π, 0 < φ < 2π: This will be

I =
∫ ∫

J · n
∣∣∣
S

da =
∫ 2π

0

∫ .3π

.1π

400 sin θ

(.8)2 + 4
(.8)2 sin θ dθ dφ =

400(.8)22π

4.64

∫ .3π

.1π

sin2 dθ

= 346.5
∫ .3π

.1π

1
2
[1 − cos(2θ)] dθ = 77.4 A

b) Find the average value of J over the defined area. The area is

Area =
∫ 2π

0

∫ .3π

.1π

(.8)2 sin θ dθ dφ = 1.46 m2

The average current density is thus Javg = (77.4/1.46)ar = 53.0ar A/m2.

5.4. Assume that a uniform electron beam of circular cross-section with radius of 0.2 mm is gen-
erated by a cathode at x = 0 and collected by an anode at x = 20 cm. The velocity of the
electrons varies with x as vx = 108x0.5 m/s, with x in meters. If the current density at the
anode is 104 A/m2, find the volume charge density and the current density as functions of x.

The requirement is that we have constant current throughout the beam path. Since the
beam is of constant radius, this means that current density must also be constant, and
will have the value J = 104 ax A/m2. Now J = ρvv ⇒ ρv = J/v = 10−4x−0.5 C/m3.

5.5. Let
J =

25
ρ

aρ − 20
ρ2 + 0.01

az A/m2

a) Find the total current crossing the plane z = 0.2 in the az direction for ρ < 0.4: Use

I =
∫ ∫

S

J · n
∣∣∣
z=.2

da =
∫ 2π

0

∫ .4

0

−20
ρ2 + .01

ρ dρ dφ

= −
(

1
2

)
20 ln(.01 + ρ2)

∣∣∣.4
0

(2π) = −20π ln(17) = −178.0 A

b) Calculate ∂ρv/∂t: This is found using the equation of continuity:

∂ρv

∂t
= −∇ · J =

1
ρ

∂

∂ρ
(ρJρ) +

∂Jz

∂z
=

1
ρ

∂

∂ρ
(25) +

∂

∂z

( −20
ρ2 + .01

)
= 0

c) Find the outward current crossing the closed surface defined by ρ = 0.01, ρ = 0.4, z = 0,
and z = 0.2: This will be

I =
∫ .2

0

∫ 2π

0

25
.01

aρ · (−aρ)(.01) dφ dz +
∫ .2

0

∫ 2π

0

25
.4

aρ · (aρ)(.4) dφ dz

+
∫ 2π

0

∫ .4

0

−20
ρ2 + .01

az · (−az) ρ dρ dφ +
∫ 2π

0

∫ .4

0

−20
ρ2 + .01

az · (az) ρ dρ dφ = 0

2



since the integrals will cancel each other.

d) Show that the divergence theorem is satisfied for J and the surface specified in part b.
In part c, the net outward flux was found to be zero, and in part b, the divergence of J
was found to be zero (as will be its volume integral). Therefore, the divergence theorem
is satisfied.

5.6. The current density in a certain region is approximated by J = (0.1/r) exp
(
−106t

)
ar A/m2

in spherical coordinates.
a) At t = 1 µs, how much current is crossing the surface r = 5? At the given time,

Ia = 4π(5)2(0.1/5)e−1 = 2πe−1 = 2.31 A.

b) Repeat for r = 6: Again, at 1 µs, Ib = 4π(6)2(0.1/6)e−1 = 2.4πe−1 = 2.77 A.

c) Use the continuity equation to find ρv(r, t), under the assumption that ρv → 0 as t → ∞:

∇ · J =
1
r2

∂

∂r

(
r2 0.1

r
e−106t

)
=

0.1
r2

e−106t = −∂ρv

∂t

Then

ρv(r, t) = −
∫

0.1
r2

e−106t dt + f(r) =
10−7

r2
e−106t + f(r)

Now, ρv → 0 as t → ∞; thus f(r) = 0. Final answer: ρv(r, t) = (10−7/r2)e−106t C/m3.

d) Find an expression for the velocity of the charge density.

v =
J
ρv

=
(0.1/r)e−106t ar

(10−7/r2)e−106t
= 106r ar m/s

5.7. Assuming that there is no transformation of mass to energy or vice-versa, it is possible to
write a continuity equation for mass.

a) If we use the continuity equation for charge as our model, what quantities correspond to J
and ρv? These would be, respectively, mass flux density in (kg/m2 − s) and mass density
in (kg/m3).

b) Given a cube 1 cm on a side, experimental data show that the rates at which mass is
leaving each of the six faces are 10.25, -9.85, 1.75, -2.00, -4.05, and 4.45 mg/s. If we
assume that the cube is an incremental volume element, determine an approximate value
for the time rate of change of density at its center. We may write the continuity equation
for mass as follows, also invoking the divergence theorem:∫

v

∂ρm

∂t
dv = −

∫
v

∇ · Jm dv = −
∮

s

Jm · dS

where ∮
s

Jm · dS = 10.25 − 9.85 + 1.75 − 2.00 − 4.05 + 4.45 = 0.550 mg/s

Treating our 1 cm3 volume as differential, we find

∂ρm

∂t

.= −0.550 × 10−3 g/s
10−6 m3

= −550 g/m3 − s
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5.8. The conductivity of carbon is about 3 × 104 S/m.
a) What size and shape sample of carbon has a conductance of 3 × 104 S? We know that

the conductance is G = σA/�, where A is the cross-sectional area and � is the length. To
make G = σ, we may use any regular shape whose length is equal to its area. Examples
include a square sheet of dimensions � × �, and of unit thickness (where conductance is
measured end-to-end), a block of square cross-section, having length �, and with cross-
section dimensions

√
� ×

√
�, or a solid cylinder of length � and radius a =

√
�/π.

b) What is the conductance if every dimension of the sample found in part a is halved?
In all three cases mentioned in part a, the conductance is one-half the original value if
all dimensions are reduced by one-half. This is easily shown using the given formula for
conductance.

5.9a. Using data tabulated in Appendix C, calculate the required diameter for a 2-m long nichrome
wire that will dissipate an average power of 450 W when 120 V rms at 60 Hz is applied to it:

The required resistance will be

R =
V 2

P
=

l

σ(πa2)

Thus the diameter will be

d = 2a = 2

√
lP

σπV 2
= 2

√
2(450)

(106)π(120)2
= 2.8 × 10−4 m = 0.28 mm

b) Calculate the rms current density in the wire: The rms current will be I = 450/120 =
3.75 A. Thus

J =
3.75

π (2.8 × 10−4/2)2
= 6.0 × 107 A/m2

5.10. A solid wire of conductivity σ1 and radius a has a jacket of material having conductivity σ2,
and whose inner radius is a and outer radius is b. Show that the ratio of the current densities
in the two materials is independent of a and b.

A constant voltage between the two ends of the wire means that the field within must be
constant throughout the wire cross-section. Calling this field E, we have

E =
J1

σ1
=

J2

σ2
⇒ J1

J2
=

σ1

σ2

which is independent of the dimensions.

5.11. Two perfectly-conducting cylindrical surfaces of length l are located at ρ = 3 and ρ = 5 cm.
The total current passing radially outward through the medium between the cylinders is 3 A
dc.

a) Find the voltage and resistance between the cylinders, and E in the region between the
cylinders, if a conducting material having σ = 0.05 S/m is present for 3 < ρ < 5 cm:
Given the current, and knowing that it is radially-directed, we find the current density
by dividing it by the area of a cylinder of radius ρ and length l:

J =
3

2πρl
aρ A/m2
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5.11a. (continued)
Then the electric field is found by dividing this result by σ:

E =
3

2πσρl
aρ =

9.55
ρl

aρ V/m

The voltage between cylinders is now:

V = −
∫ 3

5

E · dL =
∫ 5

3

9.55
ρl

aρ · aρdρ =
9.55

l
ln

(
5
3

)
=

4.88
l

V

Now, the resistance will be

R =
V

I
=

4.88
3l

=
1.63

l
Ω

b) Show that integrating the power dissipated per unit volume over the volume gives the
total dissipated power: We calculate

P =
∫

v

E · J dv =
∫ l

0

∫ 2π

0

∫ .05

.03

32

(2π)2ρ2(.05)l2
ρ dρ dφ dz =

32

2π(.05)l
ln

(
5
3

)
=

14.64
l

W

We also find the power by taking the product of voltage and current:

P = V I =
4.88

l
(3) =

14.64
l

W

which is in agreement with the power density integration.

5.12. Two identical conducting plates, each having area A, are located at z = 0 and z = d. The re-
gion between plates is filled with a material having z-dependent conductivity, σ(z) = σ0e

−z/d,
where σ0 is a constant. Voltage V0 is applied to the plate at z = d; the plate at z = 0 is at
zero potential. Find, in terms of the given parameters:
a) the resistance of the material: We start with the differential resistance of a thin slab of

the material of thickness dz, which is

dR =
dz

σA
=

ez/ddz

σ0A
so that R =

∫
dR =

∫ d

0

ez/ddz

σ0A
=

d

σ0A
(e − 1) =

1.72d

σ0A
Ω

b) the total current flowing between plates: We use

I =
V0

R
=

σ0AV0

1.72 d

c) the electric field intensity E within the material: First the current density is

J = − I

A
az =

−σ0V0

1.72 d
az so that E =

J
σ(z)

=
−V0e

z/d

1.72 d
az V/m
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5.13. A hollow cylindrical tube with a rectangular cross-section has external dimensions of 0.5 in by
1 in and a wall thickness of 0.05 in. Assume that the material is brass, for which σ = 1.5×107

S/m. A current of 200 A dc is flowing down the tube.

a) What voltage drop is present across a 1m length of the tube? Converting all measurements
to meters, the tube resistance over a 1 m length will be:

R1 =
1

(1.5 × 107) [(2.54)(2.54/2) × 10−4 − 2.54(1 − .1)(2.54/2)(1 − .2) × 10−4]
= 7.38 × 10−4 Ω

The voltage drop is now V = IR1 = 200(7.38 × 10−4 = 0.147 V.

b) Find the voltage drop if the interior of the tube is filled with a conducting material for
which σ = 1.5 × 105 S/m: The resistance of the filling will be:

R2 =
1

(1.5 × 105)(1/2)(2.54)2 × 10−4(.9)(.8)
= 2.87 × 10−2 Ω

The total resistance is now the parallel combination of R1 and R2:
RT = R1R2/(R1 + R2) = 7.19×10−4 Ω, and the voltage drop is now V = 200RT = .144 V.

5.14. A rectangular conducting plate lies in the xy plane, occupying the region 0 < x < a, 0 < y < b.
An identical conducting plate is positioned directly above and parallel to the first, at z = d.
The region between plates is filled with material having conductivity σ(x) = σ0e

−x/a, where
σ0 is a constant. Voltage V0 is applied to the plate at z = d; the plate at z = 0 is at zero
potential. Find, in terms of the given parameters:
a) the electric field intensity E within the material: We know that E will be z-directed,

but the conductivity varies with x. We therefore expect no z variation in E, and also
note that the line integral of E between the bottom and top plates must always give V0.
Therefore E = −V0/daz V/m.

b) the total current flowing between plates: We have

J = σ(x)E =
−σ0e

−x/aV0

d
az

Using this, we find

I =
∫

J · dS =
∫ b

0

∫ a

0

−σ0e
−x/aV0

d
az · (−az) dx dy =

σ0abV0

d
(1 − e−1) =

0.63abσ0V0

d
A

c) the resistance of the material: We use

R =
V0

I
=

d

0.63 ab σ0
Ω
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5.15. Let V = 10(ρ + 1)z2 cos φV in free space.

a) Let the equipotential surface V = 20 V define a conductor surface. Find the equation of
the conductor surface: Set the given potential function equal to 20, to find:

(ρ + 1)z2 cos φ = 2

b) Find ρ and E at that point on the conductor surface where φ = 0.2π and z = 1.5: At
the given values of φ and z, we solve the equation of the surface found in part a for ρ,
obtaining ρ = .10. Then

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ − ∂V

∂z
az

= −10z2 cos φaρ + 10
ρ + 1

ρ
z2 sin φaφ − 20(ρ + 1)z cos φaz

Then
E(.10, .2π, 1.5) = −18.2aρ + 145aφ − 26.7az V/m

c) Find |ρs| at that point: Since E is at the perfectly-conducting surface, it will be normal
to the surface, so we may write:

ρs = ε0E ·n
∣∣∣
surface

= ε0
E · E
|E| = ε0

√
E · E = ε0

√
(18.2)2 + (145)2 + (26.7)2 = 1.32 nC/m2

5.16. In cylindrical coordinates, V = 1000ρ2.

a) If the region 0.1 < ρ < 0.3 m is free space while the surfaces ρ = 0.1 and ρ = 0.3 m
are conductors, specify the surface charge density on each conductor: First, we find the
electric field through

E = −∇V = −∂V

∂ρ
aρ = −2000ρaρ so that D = ε0E = −2000ε0ρaρ C/m2

Then the charge densities will be

inner conductor : ρs1 = D · aρ

∣∣∣
ρ=0.1

= −200ε0 C/m2

outer conductor : ρs2 = D · (−aρ)
∣∣∣
ρ=0.3

= 600ε0 C/m2

b) What is the total charge in a 1-m length of the free space region, 0.1 < ρ < 0.3 (not
including the conductors)? The charge density in the free space region is

ρv = ∇ · D =
1
ρ

∂

∂ρ
(ρDρ) = −4000ε0 C/m3

Then the charge in the volume is

Qv =
∫ 1

0

∫ 2π

0

∫ 0.3

0.1

−4000ε0 ρ dρ dφ dz = −2π(4000)ε0
1
2

[
(0.3)2 − (0.1)2

]
= −320πε0 C
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5.16c What is the total charge in a 1-m length, including both surface charges?

First, the net surface charges over a unit length will be

Qs1(ρ = 0.1) = −200ε0[2π(0.1)](1) = −40πε0 C

and
Qs2(ρ = 0.3) = 600ε0[2π(0.3)](1) = 360πε0 C

The total charge is now Qtot = Qs1 + Qs2 + Qv = 0.

5.17. Given the potential field V = 100xz/(x2 + 4) V. in free space:
a) Find D at the surface z = 0: Use

E = −∇V = −100z
∂

∂x

(
x

x2 + 4

)
ax − 0ay − 100x

x2 + 4
az V/m

At z = 0, we use this to find D(z = 0) = ε0E(z = 0) = −100ε0x/(x2 + 4)az C/m2.

b) Show that the z = 0 surface is an equipotential surface: There are two reasons for this:
1) E at z = 0 is everywhere z-directed, and so moving a charge around on the surface
involves doing no work; 2) When evaluating the given potential function at z = 0, the
result is 0 for all x and y.

c) Assume that the z = 0 surface is a conductor and find the total charge on that portion
of the conductor defined by 0 < x < 2, −3 < y < 0: We have

ρs = D · az

∣∣∣
z=0

= −100ε0x

x2 + 4
C/m2

So

Q =
∫ 0

−3

∫ 2

0

−100ε0x

x2 + 4
dx dy = −(3)(100)ε0

(
1
2

)
ln(x2 + 4)

∣∣∣2
0

= −150ε0 ln 2 = −0.92 nC

5.18. A potential field is given as V = 100 ln
{
[(x + 1)2 + y2]/[(x − 1)2 + y2]

}
V. It is known that

point P (2, 1, 1) is on a conductor surface and that the conductor lies in free space. At P , find
a unit vector normal to the surface and also the value of the surface charge density on the
conductor.

A normal vector is the electric field vector, found (after a little algebra) to be

E = −∇V = −200
[
(x + 1)(x − 1)[(x − 1) − (x + 1)] + 2y2

[(x + 1)2 + y2][(x − 1)2 + y2]

]
ax

− 200
[

y[(x − 1)2 − (x + 1)2]
[(x + 1)2 + y2][(x − 1)2 + y2]

]
ay V/m

At the specified point (2,1,1) the field evaluates as EP = 40ax + 80ay, whose magnitude
is 89.44 V/m. The unit normal vector is therefore n = E/|E| = 0.447ax + 0.894ay. Now

ρs = D ·n
∣∣∣
P

= 89.44ε0 = 792 pC/m2. This could be positive or negative, since we do not
know which side of the surface the free space region exists.
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5.19. Let V = 20x2yz − 10z2 V in free space.

a) Determine the equations of the equipotential surfaces on which V = 0 and 60 V: Setting the
given potential function equal to 0 and 60 and simplifying results in:

At 0 V : 2x2y − z = 0

At 60 V : 2x2y − z =
6
z

b) Assume these are conducting surfaces and find the surface charge density at that point
on the V = 60 V surface where x = 2 and z = 1. It is known that 0 ≤ V ≤ 60 V is the
field-containing region: First, on the 60 V surface, we have

2x2y − z − 6
z

= 0 ⇒ 2(2)2y(1) − 1 − 6 = 0 ⇒ y =
7
8

Now
E = −∇V = −40xyz ax − 20x2z ay − [20xy − 20z]az

Then, at the given point, we have

D(2, 7/8, 1) = ε0E(2, 7/8, 1) = −ε0[70ax + 80ay + 50az] C/m2

We know that since this is the higher potential surface, D must be directed away from
it, and so the charge density would be positive. Thus

ρs =
√

D · D = 10ε0
√

72 + 82 + 52 = 1.04 nC/m2

c) Give the unit vector at this point that is normal to the conducting surface and directed
toward the V = 0 surface: This will be in the direction of E and D as found in part b, or

an = −
[
7ax + 8ay + 5az√

72 + 82 + 52

]
= −[0.60ax + 0.68ay + 0.43az]

5.20. Two point charges of −100π µC are located at (2,-1,0) and (2,1,0). The surface x = 0 is a
conducting plane.
a) Determine the surface charge density at the origin. I will solve the general case first, in

which we find the charge density anywhere on the y axis. With the conducting plane in
the yz plane, we will have two image charges, each of +100π µC, located at (-2, -1, 0)
and (-2, 1, 0). The electric flux density on the y axis from these four charges will be

D(y) =
−100π

4π


 [(y − 1)ay − 2ax]

[(y − 1)2 + 4]3/2
+

[(y + 1)ay − 2ax]
[(y + 1)2 + 4]3/2︸ ︷︷ ︸

given charges

− [(y − 1)ay + 2ax]
[(y − 1)2 + 4]3/2

− [(y + 1)ay + 2ax]
[(y + 1)2 + 4]3/2︸ ︷︷ ︸

image charges


 µC/m2
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5.20a. (continued)
In the expression, all y components cancel, and we are left with

D(y) = 100
[

1
[(y − 1)2 + 4]3/2

+
1

[(y + 1)2 + 4]3/2

]
ax µC/m2

We now find the charge density at the origin:

ρs(0, 0, 0) = D · ax

∣∣∣
y=0

= 17.9 µC/m2

b) Determine ρS at P (0, h, 0). This will be

ρs(0, h, 0) = D · ax

∣∣∣
y=h

= 100
[

1
[(h − 1)2 + 4]3/2

+
1

[(h + 1)2 + 4]3/2

]
µC/m2

5.21. Let the surface y = 0 be a perfect conductor in free space. Two uniform infinite line charges
of 30 nC/m each are located at x = 0, y = 1, and x = 0, y = 2.
a) Let V = 0 at the plane y = 0, and find V at P (1, 2, 0): The line charges will image across

the plane, producing image line charges of -30 nC/m each at x = 0, y = −1, and x = 0,
y = −2. We find the potential at P by evaluating the work done in moving a unit positive
charge from the y = 0 plane (we choose the origin) to P : For each line charge, this will
be:

VP − V0,0,0 = − ρl

2πε0
ln

[
final distance from charge

initial distance from charge

]
where V0,0,0 = 0. Considering the four charges, we thus have

VP = − ρl

2πε0

[
ln

(
1
2

)
+ ln

(√
2

1

)
− ln

(√
10
1

)
− ln

(√
17
2

)]

=
ρl

2πε0

[
ln (2) + ln

(
1√
2

)
+ ln

(√
10

)
+ ln

(√
17
2

)]
=

30 × 10−9

2πε0
ln

[√
10
√

17√
2

]

= 1.20 kV

b) Find E at P : Use

EP =
ρl

2πε0

[
(1, 2, 0) − (0, 1, 0)

|(1, 1, 0)|2 +
(1, 2, 0) − (0, 2, 0)

|(1, 0, 0)|2

− (1, 2, 0) − (0,−1, 0)
|(1, 3, 0)|2 − (1, 2, 0) − (0,−2, 0)

|(1, 4, 0)|2
]

=
ρl

2πε0

[
(1, 1, 0)

2
+

(1, 0, 0)
1

− (1, 3, 0)
10

− (1, 4, 0)
17

]
= 723ax − 18.9ay V/m
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5.22. The line segment x = 0, −1 ≤ y ≤ 1, z = 1, carries a linear charge density ρL = π|y| µC/m.
Let z = 0 be a conducting plane and determine the surface charge density at: (a) (0,0,0); (b)
(0,1,0).

We consider the line charge to be made up of a string of differential segments of length, dy′,
and of charge dq = ρL dy′. A given segment at location (0, y′, 1) will have a corresponding
image charge segment at location (0, y′,−1). The differential flux density on the y axis
that is associated with the segment-image pair will be

dD =
ρL dy′[(y − y′)ay − az]

4π[(y − y′)2 + 1]3/2
− ρL dy′[(y − y′)ay + az]

4π[(y − y′)2 + 1]3/2
=

−ρL dy′ az

2π[(y − y′)2 + 1]3/2

In other words, each charge segment and its image produce a net field in which the y
components have cancelled. The total flux density from the line charge and its image is
now

D(y) =
∫

dD =
∫ 1

−1

−π|y′|az dy′

2π[(y − y′)2 + 1]3/2

= −az

2

∫ 1

0

[
y′

[(y − y′)2 + 1]3/2
+

y′

[(y + y′)2 + 1]3/2

]
dy′

=
az

2

[
y(y − y′) + 1

[(y − y′)2 + 1]1/2
+

y(y + y′) + 1
[(y + y′)2 + 1]1/2

]1

0

=
az

2

[
y(y − 1) + 1

[(y − 1)2 + 1]1/2
+

y(y + 1) + 1
[(y + 1)2 + 1]1/2

− 2(y2 + 1)1/2

]
Now, at the origin (part a), we find the charge density through

ρs(0, 0, 0) = D · az

∣∣∣
y=0

=
az

2

[
1√
2

+
1√
2
− 2

]
= −0.29 µC/m2

Then, at (0,1,0) (part b), the charge density is

ρs(0, 1, 0) = D · az

∣∣∣
y=1

=
az

2

[
1 +

3√
5
− 2

]
= −0.24 µC/m2

5.23. A dipole with p = 0.1az µC · m is located at A(1, 0, 0) in free space, and the x = 0 plane is
perfectly-conducting.

a) Find V at P (2, 0, 1). We use the far-field potential for a z-directed dipole:

V =
p cos θ

4πε0r2
=

p

4πε0

z

[x2 + y2 + z2]1.5

The dipole at x = 1 will image in the plane to produce a second dipole of the opposite
orientation at x = −1. The potential at any point is now:

V =
p

4πε0

[
z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]
Substituting P (2, 0, 1), we find

V =
.1 × 106

4πε0

[
1

2
√

2
− 1

10
√

10

]
= 289.5 V
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5.23b) Find the equation of the 200-V equipotential surface in cartesian coordinates: We just set the
potential exression of part a equal to 200 V to obtain:[

z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]
= 0.222

5.24. At a certain temperature, the electron and hole mobilities in intrinsic germanium are given as
0.43 and 0.21 m2/V · s, respectively. If the electron and hole concentrations are both 2.3×1019

m−3, find the conductivity at this temperature.

With the electron and hole charge magnitude of 1.6 × 10−19 C, the conductivity in this
case can be written:

σ = |ρe|µe + ρhµh = (1.6 × 10−19)(2.3 × 1019)(0.43 + 0.21) = 2.36 S/m

5.25. Electron and hole concentrations increase with temperature. For pure silicon, suitable expres-
sions are ρh = −ρe = 6200T 1.5e−7000/T C/m3. The functional dependence of the mobilities
on temperature is given by µh = 2.3 × 105T−2.7 m2/V · s and µe = 2.1 × 105T−2.5 m2/V · s,
where the temperature, T , is in degrees Kelvin. The conductivity will thus be

σ = −ρeµe + ρhµh = 6200T 1.5e−7000/T
[
2.1 × 105T−2.5 + 2.3 × 105T−2.7

]
=

1.30 × 109

T
e−7000/T

[
1 + 1.095T−.2

]
S/m

Find σ at:
a) 0◦ C: With T = 273◦K, the expression evaluates as σ(0) = 4.7 × 10−5 S/m.

b) 40◦ C: With T = 273 + 40 = 313, we obtain σ(40) = 1.1 × 10−3 S/m.

c) 80◦ C: With T = 273 + 80 = 353, we obtain σ(80) = 1.2 × 10−2 S/m.

5.26. A semiconductor sample has a rectangular cross-section 1.5 by 2.0 mm, and a length of 11.0
mm. The material has electron and hole densities of 1.8×1018 and 3.0×1015 m−3, respectively.
If µe = 0.082 m2/V · s and µh = 0.0021 m2/V · s, find the resistance offered between the end
faces of the sample.

Using the given values along with the electron charge, the conductivity is

σ = (1.6 × 10−19)
[
(1.8 × 1018)(0.082) + (3.0 × 1015)(0.0021)

]
= 0.0236 S/m

The resistance is then

R =
�

σA
=

0.011
(0.0236)(0.002)(0.0015)

= 155 kΩ
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CHAPTER 6.

6.1. Atomic hydrogen contains 5.5× 1025 atoms/m3 at a certain temperature and pressure. When
an electric field of 4 kV/m is applied, each dipole formed by the electron and positive nucleus
has an effective length of 7.1 × 10−19 m.
a) Find P: With all identical dipoles, we have

P = Nqd = (5.5× 1025)(1.602× 10−19)(7.1× 10−19) = 6.26× 10−12 C/m2 = 6.26 pC/m2

b) Find εr: We use P = ε0χeE, and so

χe =
P

ε0E
=

6.26 × 10−12

(8.85 × 10−12)(4 × 103)
= 1.76 × 10−4

Then εr = 1 + χe = 1.000176.

6.2. Find the dielectric constant of a material in which the electric flux density is four times the
polarization.

First we use D = ε0E + P = ε0E + (1/4)D. Therefore D = (4/3)ε0E, so we identify
εr = 4/3.

6.3. A coaxial conductor has radii a = 0.8 mm and b = 3 mm and a polystyrene dielectric for
which εr = 2.56. If P = (2/ρ)aρ nC/m2 in the dielectric, find:
a) D and E as functions of ρ: Use

E =
P

ε0(εr − 1)
=

(2/ρ) × 10−9aρ

(8.85 × 10−12)(1.56)
=

144.9
ρ

aρ V/m

Then

D = ε0E + P =
2 × 10−9aρ

ρ

[
1

1.56
+ 1

]
=

3.28 × 10−9aρ

ρ
C/m2 =

3.28aρ

ρ
nC/m2

b) Find Vab and χe: Use

Vab = −
∫ 0.8

3

144.9
ρ

dρ = 144.9 ln
(

3
0.8

)
= 192 V

χe = εr − 1 = 1.56, as found in part a.

c) If there are 4 × 1019 molecules per cubic meter in the dielectric, find p(ρ): Use

p =
P
N

=
(2 × 10−9/ρ)

4 × 1019
aρ =

5.0 × 10−29

ρ
aρ C · m
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6.4. Consider a composite material made up of two species, having number densities N1 and N2

molecules/m3 respectively. The two materials are uniformly mixed, yielding a total number
density of N = N1 + N2. The presence of an electric field E, induces molecular dipole
moments p1 and p2 within the individual species, whether mixed or not. Show that the
dielectric constant of the composite material is given by εr = fεr1 + (1− f)εr2, where f is the
number fraction of species 1 dipoles in the composite, and where εr1 and εr2 are the dielectric
constants that the unmixed species would have if each had number density N .

We may write the total polarization vector as

Ptot = N1p1 + N2p2 = N

(
N1

N
p1 +

N2

N
p2

)
= N [fp1 + (1 − f)p2] = fP1 + (1 − f)P2

In terms of the susceptibilities, this becomes Ptot = ε0 [fχe1 + (1 − f)χe2]E, where χe1

and χe2 are evaluated at the composite number density, N . Now

D = εrε0E = ε0E + Ptot = ε0 [1 + fχe1 + (1 − f)χe2]︸ ︷︷ ︸
εr

E

Identifying εr as shown, we may rewrite it by adding and subracting f :

εr = [1 + f − f + fχe1 + (1 − f)χe2] = [f(1 + χe1) + (1 − f)(1 + χe2)]
= [fεr1 + (1 − f)εr2] Q.E.D.

6.5. The surface x = 0 separates two perfect dielectrics. For x > 0, let εr = εr1 = 3, while εr2 = 5
where x < 0. If E1 = 80ax − 60ay − 30az V/m, find:
a) EN1: This will be E1 · ax = 80 V/m.

b) ET1. This has components of E1 not normal to the surface, or ET1 = −60ay − 30az V/m.

c) ET1 =
√

(60)2 + (30)2 = 67.1 V/m.

d) E1 =
√

(80)2 + (60)2 + (30)2 = 104.4 V/m.

e) The angle θ1 between E1 and a normal to the surface: Use

cos θ1 =
E1 · ax

E1
=

80
104.4

⇒ θ1 = 40.0◦

f) DN2 = DN1 = εr1ε0EN1 = 3(8.85 × 10−12)(80) = 2.12 nC/m2.

g) DT2 = εr2ε0ET1 = 5(8.85 × 10−12)(67.1) = 2.97 nC/m2.

h) D2 = εr1ε0EN1ax + εr2ε0ET1 = 2.12ax − 2.66ay − 1.33az nC/m2.

i) P2 = D2 − ε0E2 = D2 [1 − (1/εr2)] = (4/5)D2 = 1.70ax − 2.13ay − 1.06az nC/m2.

j) the angle θ2 between E2 and a normal to the surface: Use

cos θ2 =
E2 · ax

E2
=

D2 · ax

D2
=

2.12√
(2.12)2 = (2.66)2 + (1.33)2

= .581

Thus θ2 = cos−1(.581) = 54.5◦.
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6.6. The potential field in a slab of dielectric material for which εr = 1.6 is given by V = −5000x.
a) Find D, E, and P in the material.

First, E = −∇V = 5000ax V/m. Then D = εrε0E = 1.6ε0(5000)ax = 70.8ax nC/m2.
Then, χe = εr − 1 = 0.6, and so P = ε0χeE = 0.6ε0(5000)ax = 26.6ax nC/m2.

b) Evaluate ρv, ρb, and ρt in the material. Using the results in part a, we find ρv = ∇·D = 0,
ρb = −∇ · P = 0, and ρt = ∇ · ε0E = 0.

6.7. Two perfect dielectrics have relative permittivities εr1 = 2 and εr2 = 8. The planar interface
between them is the surface x−y+2z = 5. The origin lies in region 1. If E1 = 100ax+200ay−
50az V/m, find E2: We need to find the components of E1 that are normal and tangent to
the boundary, and then apply the appropriate boundary conditions. The normal component
will be EN1 = E1 · n. Taking f = x − y + 2z, the unit vector that is normal to the surface is

n =
∇f

|∇f | =
1√
6

[ax − ay + 2az]

This normal will point in the direction of increasing f , which will be away from the origin, or
into region 2 (you can visualize a portion of the surface as a triangle whose vertices are on the
three coordinate axes at x = 5, y = −5, and z = 2.5). So EN1 = (1/

√
6)[100 − 200 − 100] =

−81.7 V/m. Since the magnitude is negative, the normal component points into region 1 from
the surface. Then

EN1 = −81.65
(

1√
6

)
[ax − ay + 2az] = −33.33ax + 33.33ay − 66.67az V/m

Now, the tangential component will be ET1 = E1 −EN1 = 133.3ax + 166.7ay + 16.67az. Our
boundary conditions state that ET2 = ET1 and EN2 = (εr1/εr2)EN1 = (1/4)EN1. Thus

E2 = ET2 + EN2 = ET1 +
1
4
EN1 = 133.3ax + 166.7ay + 16.67az − 8.3ax + 8.3ay − 16.67az

= 125ax + 175ay V/m

6.8. Region 1 (x ≥ 0) is a dielectric with εr1 = 2, while region 2 (x < 0) has εr2 = 5. Let
E1 = 20ax − 10ay + 50az V/m.

a) Find D2: One approach is to first find E2. This will have the same y and z (tangential)
components as E1, but the normal component, Ex, will differ by the ratio εr1/εr2; this
arises from Dx1 = Dx2 (normal component of D is continuous across a non-charged
interface). Therefore E2 = 20(εr1/εr2)ax − 10ay + 50az = 8ax − 10ay + 50az. The flux
density is then

D2 = εr2ε0E2 = 40ε0 ax − 50ε0 ay + 250ε0 az = 0.35ax − 0.44ay + 2.21az nC/m2

b) Find the energy density in both regions: These will be

we1 =
1
2
εr1ε0E1 · E1 =

1
2
(2)ε0

[
(20)2 + (10)2 + (50)2

]
= 3000ε0 = 26.6 nJ/m3

we2 =
1
2
εr2ε0E2 · E2 =

1
2
(5)ε0

[
(8)2 + (10)2 + (50)2

]
= 6660ε0 = 59.0 nJ/m3
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6.9. Let the cylindrical surfaces ρ = 4 cm and ρ = 9 cm enclose two wedges of perfect dielectrics,
εr1 = 2 for 0 < φ < π/2, and εr2 = 5 for π/2 < φ < 2π. If E1 = (2000/ρ)aρ V/m, find:
a) E2: The interfaces between the two media will lie on planes of constant φ, to which E1

is parallel. Thus the field is the same on either side of the boundaries, and so E2 = E1.

b) the total electrostatic energy stored in a 1m length of each region: In general we have
wE = (1/2)εrε0E

2. So in region 1:

WE1 =
∫ 1

0

∫ π/2

0

∫ 9

4

1
2
(2)ε0

(2000)2

ρ2
ρ dρ dφ dz =

π

2
ε0(2000)2 ln

(
9
4

)
= 45.1 µJ

In region 2, we have

WE2 =
∫ 1

0

∫ 2π

π/2

∫ 9

4

1
2
(5)ε0

(2000)2

ρ2
ρ dρ dφ dz =

15π

4
ε0(2000)2 ln

(
9
4

)
= 338 µJ

6.10. Let S = 100 mm2, d = 3 mm, and εr = 12 for a parallel-plate capacitor.
a) Calculate the capacitance:

C =
εrε0A

d
=

12ε0(100 × 10−6)
3 × 10−3

= 0.4ε0 = 3.54 pf

b) After connecting a 6 V battery across the capacitor, calculate E, D, Q, and the total
stored electrostatic energy: First,

E = V0/d = 6/(3 × 10−3) = 2000 V/m, then D = εrε0E = 2.4 × 104ε0 = 0.21 µC/m2

The charge in this case is

Q = D · n|s = DA = 0.21 × (100 × 10−6) = 0.21 × 10−4 µC = 21 pC

Finally, We = (1/2)QV0 = 0.5(21)(6) = 63 pJ.

c) With the source still connected, the dielectric is carefully withdrawn from between the
plates. With the dielectric gone, re-calculate E, D, Q, and the energy stored in the
capacitor.

E = V0/d = 6/(3 × 10−3) = 2000 V/m, as before. D = ε0E = 2000ε0 = 17.7 nC/m2

The charge is now Q = DA = 17.7 × (100 × 10−6) nC = 1.8 pC.

Finally, We = (1/2)QV0 = 0.5(1.8)(6) = 5.4 pJ.

d) If the charge and energy found in (c) are less than that found in (b) (which you should
have discovered), what became of the missing charge and energy? In the absence of
friction in removing the dielectric, the charge and energy have returned to the battery
that gave it.
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6.11. Capacitors tend to be more expensive as their capacitance and maximum voltage, Vmax,
increase. The voltage Vmax is limited by the field strength at which the dielectric breaks
down, EBD. Which of these dielectrics will give the largest CVmax product for equal plate
areas: (a) air: εr = 1, EBD = 3 MV/m; (b) barium titanate: εr = 1200, EBD = 3 MV/m;
(c) silicon dioxide: εr = 3.78, EBD = 16 MV/m; (d) polyethylene: εr = 2.26, EBD = 4.7
MV/m? Note that Vmax = EBDd, where d is the plate separation. Also, C = εrε0A/d, and
so VmaxC = εrε0AEBD, where A is the plate area. The maximum CVmax product is found
through the maximum εrEBD product. Trying this with the given materials yields the winner,
which is barium titanate.

6.12. An air-filled parallel-plate capacitor with plate separation d and plate area A is connected to
a battery which applies a voltage V0 between plates. With the battery left connected, the
plates are moved apart to a distance of 10d. Determine by what factor each of the following
quantities changes:
a) V0: Remains the same, since the battery is left connected.

b) C: As C = ε0A/d, increasing d by a factor of ten decreases C by a factor of 0.1.

c) E: We require E × d = V0, where V0 has not changed. Therefore, E has decreased by a
factor of 0.1.

d) D: As D = ε0E, and since E has decreased by 0.1, D decreases by 0.1.

e) Q: Since Q = CV0, and as C is down by 0.1, Q also decreases by 0.1.

f) ρS : As Q is reduced by 0.1, ρS reduces by 0.1. This is also consistent with D having been
reduced by 0.1.

g) We: Use We = 1/2 CV 2
0 , to observe its reduction by 0.1, since C is reduced by that factor.

6.13. A parallel plate capacitor is filled with a nonuniform dielectric characterized by εr = 2 + 2 ×
106x2, where x is the distance from one plate. If S = 0.02 m2, and d = 1 mm, find C: Start by
assuming charge density ρs on the top plate. D will, as usual, be x-directed, originating at the
top plate and terminating on the bottom plate. The key here is that D will be constant over
the distance between plates. This can be understood by considering the x-varying dielectric as
constructed of many thin layers, each having constant permittivity. The permittivity changes
from layer to layer to approximate the given function of x. The approximation becomes exact
as the layer thicknesses approach zero. We know that D, which is normal to the layers, will
be continuous across each boundary, and so D is constant over the plate separation distance,
and will be given in magnitude by ρs. The electric field magnitude is now

E =
D

ε0εr
=

ρs

ε0(2 + 2 × 106x2)

The voltage beween plates is then

V0 =
∫ 10−3

0

ρs dx

ε0(2 + 2 × 106x2)
=

ρs

ε0

1√
4 × 106

tan−1

(
x
√

4 × 106

2

)∣∣∣10−3

0
=

ρs

ε0

1
2 × 103

(π

4

)

Now Q = ρs(.02), and so

C =
Q

V0
=

ρs(.02)ε0(2 × 103)(4)
ρsπ

= 4.51 × 10−10 F = 451 pF
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6.14. Repeat Problem 6.12 assuming the battery is disconnected before the plate separation is
increased: The ordering of parameters is changed over that in Problem 6.12, as the progression
of thought on the matter is different.

a) Q: Remains the same, since with the battery disconnected, the charge has nowhere to go.

b) ρS : As Q is unchanged, ρS is also unchanged, since the plate area is the same.

c) D: As D = ρS , it will remain the same also.

d) E: Since E = D/ε0, and as D is not changed, E will also remain the same.

e) V0: We require E × d = V0, where E has not changed. Therefore, V0 has increased by a
factor of 10.

f) C: As C = ε0A/d, increasing d by a factor of ten decreases C by a factor of 0.1. The
same result occurs because C = Q/V0, where V0 is increased by 10, whereas Q has not
changed.

g) We: Use We = 1/2 CV 2
0 = 1/2 QV0, to observe its increase by a factor of 10.

6.15. Let εr1 = 2.5 for 0 < y < 1 mm, εr2 = 4 for 1 < y < 3 mm, and εr3 for 3 < y < 5 mm.
Conducting surfaces are present at y = 0 and y = 5 mm. Calculate the capacitance per square
meter of surface area if: a) εr3 is that of air; b) εr3 = εr1; c) εr3 = εr2; d) region 3 is silver:
The combination will be three capacitors in series, for which

1
C

=
1
C1

+
1
C2

+
1
C3

=
d1

εr1ε0(1)
+

d2

εr2ε0(1)
+

d3

εr3ε0(1)
=

10−3

ε0

[
1

2.5
+

2
4

+
2

εr3

]

So that

C =
(5 × 10−3)ε0εr3

10 + 4.5εr3

Evaluating this for the four cases, we find a) C = 3.05 nF for εr3 = 1, b) C = 5.21 nF for
εr3 = 2.5, c) C = 6.32 nF for εr3 = 4, and d) C = 9.83 nF if silver (taken as a perfect
conductor) forms region 3; this has the effect of removing the term involving εr3 from the
original formula (first equation line), or equivalently, allowing εr3 to approach infinity.

6.16. A parallel-plate capacitor is made using two circular plates of radius a, with the bottom plate
on the xy plane, centered at the origin. The top plate is located at z = d, with its center on
the z axis. Potential V0 is on the top plate; the bottom plate is grounded. Dielectric having
radially-dependent permittivity fills the region between plates. The permittivity is given by
ε(ρ) = ε0(1 + ρ/a). Find:
a) E: Since ε does not vary in the z direction, and since we must always obtain V0 when

integrating E between plates, it must follow that E = −V0/daz V/m.

b) D: D = εE = −[ε0(1 + ρ/a)V0/d] az C/m2.

c) Q: Here we find the integral of the surface charge density over the top plate:

Q =
∫

S

D · dS =
∫ 2π

0

∫ a

0

−ε0(1 + ρ/a)V0

d
az · (−az) ρ dρ dφ =

2πε0V0

d

∫ a

0

(ρ + ρ2/a) dρ

=
5πε0a

2

3d
V0

d) C: We use C = Q/V0 and our previous result to find C = 5ε0(πa2)/(3d) F.
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6.17. Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length of 1m. The region
between the cylinders contains a layer of dielectric from ρ = c to ρ = d with εr = 4. Find the
capacitance if
a) c = 2 cm, d = 3 cm: This is two capacitors in series, and so

1
C

=
1
C1

+
1
C2

=
1

2πε0

[
1
4

ln
(

3
2

)
+ ln

(
4
3

)]
⇒ C = 143 pF

b) d = 4 cm, and the volume of the dielectric is the same as in part a: Having equal volumes
requires that 32 − 22 = 42 − c2, from which c = 3.32 cm. Now

1
C

=
1
C1

+
1
C2

=
1

2πε0

[
ln

(
3.32
2

)
+

1
4

ln
(

4
3.32

)]
⇒ C = 101 pF

6.18. (a) If we could specify a material to be used as the dielectric in a coaxial capacitor for which
the permittivity varied continuously with radius, what variation with ρ should be used in order
to maintain a uniform value of the electric field intensity?

Gauss’s law tells us that regardless of the radially-varying permittivity, D = (aρs/ρ)aρ,
where a is the inner radius and ρs is the presumed surface charge density on the inner
cylinder. Now

E =
D
ε

=
aρs

ερ
aρ

which indicates that ε must have a 1/ρ dependence if E is to be constant with radius.

b) Under the conditions of part a, how do the inner and outer radii appear in the expression
for the capacitance per unit distance? Let ε = g/ρ where g is a constant. Then E =
aρs/g aρ and the voltage between cylinders will be

V0 = −
∫ a

b

aρs

g
aρ · aρ dρ =

aρs

g
(b − a)

where b is the outer radius. The capacitance per unit length is then C = 2πaρs/V0 =
2πg/(b − a), or a simple inverse-distance relation.

6.19. Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The interior is a perfect
dielectric for which εr = 8.

a) Find C: For a spherical capacitor, we know that:

C =
4πεrε0
1
a − 1

b

=
4π(8)ε0(

1
3 − 1

6

)
(100)

= 1.92πε0 = 53.3 pF

b) A portion of the dielectric is now removed so that εr = 1.0, 0 < φ < π/2, and εr = 8,
π/2 < φ < 2π. Again, find C: We recognize here that removing that portion leaves
us with two capacitors in parallel (whose C’s will add). We use the fact that with the
dielectric completely removed, the capacitance would be C(εr = 1) = 53.3/8 = 6.67 pF.
With one-fourth the dielectric removed, the total capacitance will be

C =
1
4
(6.67) +

3
4
(53.4) = 41.7 pF
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6.20. Show that the capacitance per unit length of a cylinder of radius a is zero: Let ρs be the
surface charge density on the surface at ρ = a. Then the charge per unit length is Q = 2πaρs.
The electric field (assuming free space) is E = (aρs)/(ε0ρ)aρ. The potential difference is
evaluated between radius a and infinite radius, and is

V0 = −
∫ a

∞

aρs

ε0ρ
aρ · aρ dρ → ∞

The capacitance, equal to Q/V0, is therefore zero.

6.21. With reference to Fig. 6.9, let b = 6 m, h = 15 m, and the conductor potential be 250 V.
Take ε = ε0. Find values for K1, ρL, a, and C: We have

K1 =

[
h +

√
h2 + b2

b

]2

=

[
15 +

√
(15)2 + (6)2

6

]2

= 23.0

We then have

ρL =
4πε0V0

lnK1
=

4πε0(250)
ln(23)

= 8.87 nC/m

Next, a =
√

h2 − b2 =
√

(15)2 − (6)2 = 13.8 m. Finally,

C =
2πε

cosh−1(h/b)
=

2πε0

cosh−1(15/6)
= 35.5 pF

6.22. Two #16 copper conductors (1.29-mm diameter) are parallel with a separation d between
axes. Determine d so that the capacitance between wires in air is 30 pF/m.

We use
C

L
= 60 pF/m =

2πε0

cosh−1(h/b)

The above expression evaluates the capacitance of one of the wires suspended over a plane
at mid-span, h = d/2. Therefore the capacitance of that structure is doubled over that
required (from 30 to 60 pF/m). Using this,

h

b
= cosh

(
2πε0
C/L

)
= cosh

(
2π × 8.854

60

)
= 1.46

Therefore, d = 2h = 2b(1.46) = 2(1.29/2)(1.46) = 1.88 mm.

6.23. A 2 cm diameter conductor is suspended in air with its axis 5 cm from a conducting plane.
Let the potential of the cylinder be 100 V and that of the plane be 0 V. Find the surface
charge density on the:

a) cylinder at a point nearest the plane: The cylinder will image across the plane, producing
an equivalent two-cylinder problem, with the second one at location 5 cm below the
plane. We will take the plane as the zy plane, with the cylinder positions at x = ±5.
Now b = 1 cm, h = 5 cm, and V0 = 100 V. Thus a =

√
h2 − b2 = 4.90 cm. Then

K1 = [(h + a)/b]2 = 98.0, and ρL = (4πε0V0)/ lnK1 = 2.43 nC/m. Now

D = ε0E = −ρL

2π

[
(x + a)ax + yay

(x + a)2 + y2
− (x − a)ax + yay

(x − a)2 + y2

]

8



6.23a. (continued)
and

ρs, max = D · (−ax)
∣∣∣
x=h−b,y=0

=
ρL

2π

[
h − b + a

(h − b + a)2
− h − b − a

(h − b − a)2

]
= 473 nC/m2

b) plane at a point nearest the cylinder: At x = y = 0,

D(0, 0) = −ρL

2π

[
aax

a2
− −aax

a2

]
= −ρL

2π

2
a
ax

from which
ρs = D(0, 0) · ax = −ρL

πa
= −15.8 nC/m2

6.24. For the conductor configuration of Problem 6.23, determine the capacitance per unit length.
This is a quick one if we have already solved 6.23. The capacitance per unit length will be
C = ρL/V0 = 2.43 [nC/m]/100 = 24.3 pF/m.

6.25 Construct a curvilinear square map for a coaxial capacitor of 3-cm inner radius and 8-cm outer
radius. These dimensions are suitable for the drawing.
a) Use your sketch to calculate the capacitance per meter length, assuming εR = 1: The

sketch is shown below. Note that only a 9◦ sector was drawn, since this would then be
duplicated 40 times around the circumference to complete the drawing. The capacitance
is thus

C
.= ε0

NQ

NV
= ε0

40
6

= 59 pF/m

b) Calculate an exact value for the capacitance per unit length: This will be

C =
2πε0

ln(8/3)
= 57 pF/m

9



6.26 Construct a curvilinear-square map of the potential field about two parallel circular cylinders,
each of 2.5 cm radius, separated by a center-to-center distance of 13cm. These dimensions are
suitable for the actual sketch if symmetry is considered. As a check, compute the capacitance
per meter both from your sketch and from the exact formula. Assume εR = 1.

Symmetry allows us to plot the field lines and equipotentials over just the first quadrant, as
is done in the sketch below (shown to one-half scale). The capacitance is found from the
formula C = (NQ/NV )ε0, where NQ is twice the number of squares around the perimeter
of the half-circle and NV is twice the number of squares between the half-circle and the left
vertical plane. The result is

C =
NQ

NV
ε0 =

32
16

ε0 = 2ε0 = 17.7 pF/m

We check this result with that using the exact formula:

C =
πε0

cosh−1(d/2a)
=

πε0

cosh−1(13/5)
= 1.95ε0 = 17.3 pF/m

10



6.27. Construct a curvilinear square map of the potential field between two parallel circular cylin-
ders, one of 4-cm radius inside one of 8-cm radius. The two axes are displaced by 2.5 cm.
These dimensions are suitable for the drawing. As a check on the accuracy, compute the
capacitance per meter from the sketch and from the exact expression:

C =
2πε

cosh−1 [(a2 + b2 − D2)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

The drawing is shown below. Use of the exact expression above yields a capacitance value of
C = 11.5ε0 F/m. Use of the drawing produces:

C
.=

22 × 2
4

ε0 = 11ε0 F/m

11



6.28. A solid conducting cylinder of 4-cm radius is centered within a rectangular conducting cylinder
with a 12-cm by 20-cm cross-section.

a) Make a full-size sketch of one quadrant of this configuration and construct a curvilinear-
square map for its interior: The result below could still be improved a little, but is
nevertheless sufficient for a reasonable capacitance estimate. Note that the five-sided
region in the upper right corner has been partially subdivided (dashed line) in anticipation
of how it would look when the next-level subdivision is done (doubling the number of field
lines and equipotentials).

b) Assume ε = ε0 and estimate C per meter length: In this case NQ is the number of squares
around the full perimeter of the circular conductor, or four times the number of squares
shown in the drawing. NV is the number of squares between the circle and the rectangle,
or 5. The capacitance is estimated to be

C =
NQ

NV
ε0 =

4 × 13
5

ε0 = 10.4ε0
.= 90 pF/m

12



6.29. The inner conductor of the transmission line shown in Fig. 6.14 has a square cross-section
2a × 2a, while the outer square is 5a × 5a. The axes are displaced as shown. (a) Construct
a good-sized drawing of the transmission line, say with a = 2.5 cm, and then prepare a
curvilinear-square plot of the electrostatic field between the conductors. (b) Use the map to
calculate the capacitance per meter length if ε = 1.6ε0. (c) How would your result to part b
change if a = 0.6 cm?

a) The plot is shown below. Some improvement is possible, depending on how much time
one wishes to spend.

b) From the plot, the capacitance is found to be

C
.=

16 × 2
4

(1.6)ε0 = 12.8ε0
.= 110 pF/m

c) If a is changed, the result of part b would not change, since all dimensions retain the same
relative scale.

6.30. For the coaxial capacitor of Problem 6.18, suppose that the dielectric is leaky, allowing current
to flow between the inner and outer conductors, while the electric field is still uniform with
radius.

a) What functional form must the dielectric conductivity assume? We must have constant
current through any cross-section, which means that J = I/(2πρ)aρ A/m2, where I is
the radial current per unit length. Then, from J = σE, where E is constant, we require
a 1/ρ dependence on σ, or let σ = σ0/ρ, where σ0 is a constant.

b) What is the basic functional form of the resistance per unit distance, R? From Problem
6.18, we had E = aρs/g aρ V/m, where ρs is the surface charge density on the inner con-
ductor, and g is the constant parameter in the permittivity, ε = g/ρ. Now, I = 2πρσE =
2πaρsσ0/g, and V0 = aρs(b − a)/g (from 6.18). Then R = V0/I = (b − a)/(2πσ0).

13



6.30c) What parameters remain in the product, RC, where the form of C, the capacitance per unit
distance, has been determined in Problem 6.18? With C = 2πg/(b − a) (from 6.18), we have
RC = g/σ0.

6.31. A two-wire transmission line consists of two parallel perfectly-conducting cylinders, each hav-
ing a radius of 0.2 mm, separated by center-to-center distance of 2 mm. The medium sur-
rounding the wires has εr = 3 and σ = 1.5 mS/m. A 100-V battery is connected between the
wires. Calculate:
a) the magnitude of the charge per meter length on each wire: Use

C =
πε

cosh−1(h/b)
=

π × 3 × 8.85 × 10−12

cosh−1 (1/0.2)
= 3.64 × 10−9 C/m

Then the charge per unit length will be

Q = CV0 = (3.64 × 10−11)(100) = 3.64 × 10−9 C/m = 3.64 nC/m

b) the battery current: Use

RC =
ε

σ
⇒ R =

3 × 8.85 × 10−12

(1.5 × 10−3)(3.64 × 10−11)
= 486 Ω

Then
I =

V0

R
=

100
486

= 0.206 A = 206 mA
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CHAPTER 8

8.1a. Find H in cartesian components at P (2, 3, 4) if there is a current filament on the z axis carrying
8 mA in the az direction:
Applying the Biot-Savart Law, we obtain

Ha =
∫ ∞

−∞

IdL × aR

4πR2
=

∫ ∞

−∞

Idz az × [2ax + 3ay + (4 − z)az]
4π(z2 − 8z + 29)3/2

=
∫ ∞

−∞

Idz[2ay − 3ax]
4π(z2 − 8z + 29)3/2

Using integral tables, this evaluates as

Ha =
I

4π

[
2(2z − 8)(2ay − 3ax)
52(z2 − 8z + 29)1/2

]∞

−∞
=

I

26π
(2ay − 3ax)

Then with I = 8 mA, we finally obtain Ha = −294ax + 196ay µA/m

b. Repeat if the filament is located at x = −1, y = 2: In this case the Biot-Savart integral
becomes

Hb =
∫ ∞

−∞

Idz az × [(2 + 1)ax + (3 − 2)ay + (4 − z)az]
4π(z2 − 8z + 26)3/2

=
∫ ∞

−∞

Idz[3ay − ax]
4π(z2 − 8z + 26)3/2

Evaluating as before, we obtain with I = 8 mA:

Hb =
I

4π

[
2(2z − 8)(3ay − ax)
40(z2 − 8z + 26)1/2

]∞

−∞
=

I

20π
(3ay − ax) = −127ax + 382ay µA/m

c. Find H if both filaments are present: This will be just the sum of the results of parts a and
b, or

HT = Ha + Hb = −421ax + 578ay µA/m

This problem can also be done (somewhat more simply) by using the known result for H from
an infinitely-long wire in cylindrical components, and transforming to cartesian components.
The Biot-Savart method was used here for the sake of illustration.

8.2. A filamentary conductor is formed into an equilateral triangle with sides of length � carrying
current I. Find the magnetic field intensity at the center of the triangle.

I will work this one from scratch, using the Biot-Savart law. Consider one side of the
triangle, oriented along the z axis, with its end points at z = ±�/2. Then consider a
point, x0, on the x axis, which would correspond to the center of the triangle, and at
which we want to find H associated with the wire segment. We thus have IdL = Idz az,
R =

√
z2 + x2

0, and aR = [x0 ax − z az]/R. The differential magnetic field at x0 is now

dH =
IdL × aR

4πR2
=

Idz az × (x0ax − z az)
4π(x2

0 + z2)3/2
=

I dz x0 ay

4π(x2
0 + z2)3/2

where ay would be normal to the plane of the triangle. The magnetic field at x0 is then

H =
∫ �/2

−�/2

I dz x0 ay

4π(x2
0 + z2)3/2

=
I z ay

4πx0

√
x2

0 + z2

∣∣∣�/2

−�/2
=

I�ay

2πx0

√
�2 + 4x2

0
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8.2. (continued). Now, x0 lies at the center of the equilateral triangle, and from the geometry of
the triangle, we find that x0 = (�/2) tan(30◦) = �/(2

√
3). Substituting this result into the

just-found expression for H leads to H = 3I/(2π�)ay. The contributions from the other two
sides of the triangle effectively multiply the above result by three. The final answer is therefore
Hnet = 9I/(2π�)ay A/m. It is also possible to work this problem (somewhat more easily) by
using Eq. (9), applied to the triangle geometry.

8.3. Two semi-infinite filaments on the z axis lie in the regions −∞ < z < −a (note typographical
error in problem statement) and a < z < ∞. Each carries a current I in the az direction.
a) Calculate H as a function of ρ and φ at z = 0: One way to do this is to use the field from

an infinite line and subtract from it that portion of the field that would arise from the
current segment at −a < z < a, found from the Biot-Savart law. Thus,

H =
I

2πρ
aφ −

∫ a

−a

I dz az × [ρaρ − z az]
4π[ρ2 + z2]3/2

The integral part simplifies and is evaluated:∫ a

−a

I dz ρaφ

4π[ρ2 + z2]3/2
=

Iρ

4π
aφ

z

ρ2
√

ρ2 + z2

∣∣∣a
−a

=
Ia

2πρ
√

ρ2 + a2
aφ

Finally,

H =
I

2πρ

[
1 − a√

ρ2 + a2

]
aφ A/m

b) What value of a will cause the magnitude of H at ρ = 1, z = 0, to be one-half the value
obtained for an infinite filament? We require[

1 − a√
ρ2 + a2

]
ρ=1

=
1
2

⇒ a√
1 + a2

=
1
2

⇒ a = 1/
√

3

8.4. (a) A filament is formed into a circle of radius a, centered at the origin in the plane z = 0. It
carries a current I in the aφ direction. Find H at the origin:

Using the Biot-Savart law, we have IdL = Iadπ aφ, R = a, and aR = −aρ. The field at
the center of the circle is then

Hcirc =
∫ 2π

0

Iadφaφ × (−aρ)
4πa2

=
∫ 2π

0

Idφaz

4πa
=

I

2a
az A/m

b) A second filament is shaped into a square in the z = 0 plane. The sides are parallel to
the coordinate axes and a current I flows in the general aφ direction. Determine the side
length b (in terms of a), such that H at the origin is the same magnitude as that of the
circular loop of part a.

Applying Eq. (9), we write the field from a single side of length b at a distance b/2 from
the side center as:

H =
I az

4π(b/2)
[sin(45◦) − sin(−45◦)] =

√
2I az

2πb

so that the total field at the center of the square will be four times the above result or,
Hsq = 2

√
2I az/(πb) A/m. Now, setting Hsq = Hcirc, we find b = 4

√
2a/π = 1.80 a.
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8.5. The parallel filamentary conductors shown in Fig. 8.21 lie in free space. Plot |H| versus
y, −4 < y < 4, along the line x = 0, z = 2: We need an expression for H in cartesian
coordinates. We can start with the known H in cylindrical for an infinite filament along the
z axis: H = I/(2πρ)aφ, which we transform to cartesian to obtain:

H =
−Iy

2π(x2 + y2)
ax +

Ix

2π(x2 + y2)
ay

If we now rotate the filament so that it lies along the x axis, with current flowing in positive
x, we obtain the field from the above expression by replacing x with y and y with z:

H =
−Iz

2π(y2 + z2)
ay +

Iy

2π(y2 + z2)
az

Now, with two filaments, displaced from the x axis to lie at y = ±1, and with the current
directions as shown in the figure, we use the previous expression to write

H =
[

Iz

2π[(y + 1)2 + z2]
− Iz

2π[(y − 1)2 + z2]

]
ay +

[
I(y − 1)

2π[(y − 1)2 + z2]
− I(y + 1)

2π[(y + 1)2 + z2]

]
az

We now evaluate this at z = 2, and find the magnitude (
√

H · H), resulting in

|H| =
I

2π

[(
2

y2 + 2y + 5
− 2

y2 − 2y + 5

)2

+
(

(y − 1)
y2 − 2y + 5

− (y + 1)
y2 + 2y + 5

)2
]1/2

This function is plotted below

8.6. A disk of radius a lies in the xy plane, with the z axis through its center. Surface charge of
uniform density ρs lies on the disk, which rotates about the z axis at angular velocity Ω rad/s.
Find H at any point on the z axis.

We use the Biot-Savart law in the form of Eq. (6), with the following parameters: K =
ρsv = ρsρΩaφ, R =

√
z2 + ρ2, and aR = (z az − ρaρ)/R. The differential field at point

z is

dH =
Kda × aR

4πR2
=

ρsρ Ωaφ × (z az − ρaρ)
4π(z2 + ρ2)3/2

ρ dρ dφ =
ρsρ Ω (z aρ + ρaz)

4π(z2 + ρ2)3/2
ρ dρ dφ
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8.6. (continued). On integrating the above over φ around a complete circle, the aρ components
cancel from symmetry, leaving us with

H(z) =
∫ 2π

0

∫ a

0

ρsρ Ω ρaz

4π(z2 + ρ2)3/2
ρ dρ dφ =

∫ a

0

ρs Ω ρ3 az

2(z2 + ρ2)3/2
dρ

=
ρsΩ
2

[√
z2 + ρ2 +

z2√
z2 + ρ2

]a

0

az =
ρsΩ
2z


a2 + 2z2

(
1 −

√
1 + a2/z2

)
√

1 + a2/z2


az A/m

8.7. Given points C(5,−2, 3) and P (4,−1, 2); a current element IdL = 10−4(4,−3, 1) A · m at C
produces a field dH at P .
a) Specify the direction of dH by a unit vector aH : Using the Biot-Savart law, we find

dH =
IdL × aCP

4πR2
CP

=
10−4[4ax − 3ay + az] × [−ax + ay − az]

4π33/2
=

[2ax + 3ay + az] × 10−4

65.3

from which
aH =

2ax + 3ay + az√
14

= 0.53ax + 0.80ay + 0.27az

b) Find |dH|.

|dH| =
√

14 × 10−4

65.3
= 5.73 × 10−6 A/m = 5.73 µA/m

c) What direction al should IdL have at C so that dH = 0? IdL should be collinear with
aCP , thus rendering the cross product in the Biot-Savart law equal to zero. Thus the
answer is al = ±(−ax + ay − az)/

√
3

8.8. For the finite-length current element on the z axis, as shown in Fig. 8.5, use the Biot-Savart
law to derive Eq. (9) of Sec. 8.1: The Biot-Savart law reads:

H =
∫ z2

z1

IdL × aR

4πR2
=

∫ ρ tan α2

ρ tan α1

Idzaz × (ρaρ − zaz)
4π(ρ2 + z2)3/2

=
∫ ρ tan α2

ρ tan α1

Iρaφ dz

4π(ρ2 + z2)3/2

The integral is evaluated (using tables) and gives the desired result:

H =
Izaφ

4πρ
√

ρ2 + z2

∣∣∣ρ tan α2

ρ tan α1

=
I

4πρ

[
tanα2√

1 + tan2 α2

− tanα1√
1 + tan2 α1

]
aφ

=
I

4πρ
(sinα2 − sinα1)aφ
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8.9. A current sheet K = 8ax A/m flows in the region −2 < y < 2 in the plane z = 0. Calculate
H at P (0, 0, 3): Using the Biot-Savart law, we write

HP =
∫ ∫

K × aR dx dy

4πR2
=

∫ 2

−2

∫ ∞

−∞

8ax × (−xax − yay + 3az)
4π(x2 + y2 + 9)3/2

dx dy

Taking the cross product gives:

HP =
∫ 2

−2

∫ ∞

−∞

8(−yaz − 3ay) dx dy

4π(x2 + y2 + 9)3/2

We note that the z component is anti-symmetric in y about the origin (odd parity). Since the
limits are symmetric, the integral of the z component over y is zero. We are left with

HP =
∫ 2

−2

∫ ∞

−∞

−24ay dx dy

4π(x2 + y2 + 9)3/2
= − 6

π
ay

∫ 2

−2

x

(y2 + 9)
√

x2 + y2 + 9

∣∣∣∞
−∞

dy

= − 6
π
ay

∫ 2

−2

2
y2 + 9

dy = −12
π

ay
1
3

tan−1
(y

3

) ∣∣∣2
−2

= − 4
π

(2)(0.59)ay = −1.50ay A/m

8.10. A hollow spherical conducting shell of radius a has filamentary connections made at the top
(r = a, θ = 0) and bottom (r = a, θ = π). A direct current I flows down the upper filament,
down the spherical surface, and out the lower filament. Find H in spherical coordinates (a)
inside and (b) outside the sphere.

Applying Ampere’s circuital law, we use a circular contour, centered on the z axis, and
find that within the sphere, no current is enclosed, and so H = 0 when r < a. The same
contour drawn outside the sphere at any z position will always enclose I amps, flowing
in the negative z direction, and so

H = − I

2πρ
aφ = − I

2πr sin θ
aφ A/m (r > a)

8.11. An infinite filament on the z axis carries 20π mA in the az direction. Three uniform cylindrical
current sheets are also present: 400 mA/m at ρ = 1 cm, −250 mA/m at ρ = 2 cm, and −300
mA/m at ρ = 3 cm. Calculate Hφ at ρ = 0.5, 1.5, 2.5, and 3.5 cm: We find Hφ at each of the
required radii by applying Ampere’s circuital law to circular paths of those radii; the paths
are centered on the z axis. So, at ρ1 = 0.5 cm:∮

H · dL = 2πρ1Hφ1 = Iencl = 20π × 10−3 A

Thus

Hφ1 =
10 × 10−3

ρ1
=

10 × 10−3

0.5 × 10−2
= 2.0 A/m

At ρ = ρ2 = 1.5 cm, we enclose the first of the current cylinders at ρ = 1 cm. Ampere’s law
becomes:

2πρ2Hφ2 = 20π + 2π(10−2)(400) mA ⇒ Hφ2 =
10 + 4.00
1.5 × 10−2

= 933 mA/m
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Following this method, at 2.5 cm:

Hφ3 =
10 + 4.00 − (2 × 10−2)(250)

2.5 × 10−2
= 360 mA/m

and at 3.5 cm,

Hφ4 =
10 + 4.00 − 5.00 − (3 × 10−2)(300)

3.5 × 10−2
= 0

8.12. In Fig. 8.22, let the regions 0 < z < 0.3 m and 0.7 < z < 1.0 m be conducting slabs carrying
uniform current densities of 10 A/m2 in opposite directions as shown. The problem asks you
to find H at various positions. Before continuing, we need to know how to find H for this type
of current configuration. The sketch below shows one of the slabs (of thickness D) oriented
with the current coming out of the page. The problem statement implies that both slabs are of
infinite length and width. To find the magnetic field inside a slab, we apply Ampere’s circuital
law to the rectangular path of height d and width w, as shown, since by symmetry, H should
be oriented horizontally. For example, if the sketch below shows the upper slab in Fig. 8.22,
current will be in the positive y direction. Thus H will be in the positive x direction above
the slab midpoint, and will be in the negative x direction below the midpoint.

 

 

    

    

Hout

Hout

In taking the line integral in Ampere’s law, the two vertical path segments will cancel each
other. Ampere’s circuital law for the interior loop becomes∮

H · dL = 2Hin × w = Iencl = J × w × d ⇒ Hin =
Jd

2

The field outside the slab is found similarly, but with the enclosed current now bounded by
the slab thickness, rather than the integration path height:

2Hout × w = J × w × D ⇒ Hout =
JD

2

where Hout is directed from right to left below the slab and from left to right above the slab
(right hand rule). Reverse the current, and the fields, of course, reverse direction. We are now
in a position to solve the problem.
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8.12. (continued). Find H at:
a) z = −0.2m: Here the fields from the top and bottom slabs (carrying opposite currents)

will cancel, and so H = 0.

b) z = 0.2m. This point lies within the lower slab above its midpoint. Thus the field will
be oriented in the negative x direction. Referring to Fig. 8.22 and to the sketch on the
previous page, we find that d = 0.1. The total field will be this field plus the contribution
from the upper slab current:

H =
−10(0.1)

2
ax︸ ︷︷ ︸

lower slab

− 10(0.3)
2

ax︸ ︷︷ ︸
upper slab

= −2ax A/m

c) z = 0.4m: Here the fields from both slabs will add constructively in the negative x
direction:

H = −2
10(0.3)

2
ax = −3ax A/m

d) z = 0.75m: This is in the interior of the upper slab, whose midpoint lies at z = 0.85.
Therefore d = 0.2. Since 0.75 lies below the midpoint, magnetic field from the upper
slab will lie in the negative x direction. The field from the lower slab will be negative
x-directed as well, leading to:

H =
−10(0.2)

2
ax︸ ︷︷ ︸

upper slab

− 10(0.3)
2

ax︸ ︷︷ ︸
lower slab

= −2.5ax A/m

e) z = 1.2m: This point lies above both slabs, where again fields cancel completely: Thus
H = 0.

8.13. A hollow cylindrical shell of radius a is centered on the z axis and carries a uniform surface
current density of Kaaφ.

a) Show that H is not a function of φ or z: Consider this situation as illustrated in Fig.
8.11. There (sec. 8.2) it was stated that the field will be entirely z-directed. We can see
this by applying Ampere’s circuital law to a closed loop path whose orientation we choose
such that current is enclosed by the path. The only way to enclose current is to set up
the loop (which we choose to be rectangular) such that it is oriented with two parallel
opposing segments lying in the z direction; one of these lies inside the cylinder, the other
outside. The other two parallel segments lie in the ρ direction. The loop is now cut by the
current sheet, and if we assume a length of the loop in z of d, then the enclosed current
will be given by Kd A. There will be no φ variation in the field because where we position
the loop around the circumference of the cylinder does not affect the result of Ampere’s
law. If we assume an infinite cylinder length, there will be no z dependence in the field,
since as we lengthen the loop in the z direction, the path length (over which the integral
is taken) increases, but then so does the enclosed current – by the same factor. Thus H
would not change with z. There would also be no change if the loop was simply moved
along the z direction.
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8.13b) Show that Hφ and Hρ are everywhere zero. First, if Hφ were to exist, then we should be
able to find a closed loop path that encloses current, in which all or or portion of the path
lies in the φ direction. This we cannot do, and so Hφ must be zero. Another argument is
that when applying the Biot-Savart law, there is no current element that would produce
a φ component. Again, using the Biot-Savart law, we note that radial field components
will be produced by individual current elements, but such components will cancel from
two elements that lie at symmetric distances in z on either side of the observation point.

c) Show that Hz = 0 for ρ > a: Suppose the rectangular loop was drawn such that the
outside z-directed segment is moved further and further away from the cylinder. We
would expect Hz outside to decrease (as the Biot-Savart law would imply) but the same
amount of current is always enclosed no matter how far away the outer segment is. We
therefore must conclude that the field outside is zero.

d) Show that Hz = Ka for ρ < a: With our rectangular path set up as in part a, we have no
path integral contributions from the two radial segments, and no contribution from the
outside z-directed segment. Therefore, Ampere’s circuital law would state that∮

H · dL = Hzd = Iencl = Kad ⇒ Hz = Ka

where d is the length of the loop in the z direction.

e) A second shell, ρ = b, carries a current Kbaφ. Find H everywhere: For ρ < a we would
have both cylinders contributing, or Hz(ρ < a) = Ka +Kb. Between the cylinders, we are
outside the inner one, so its field will not contribute. Thus Hz(a < ρ < b) = Kb. Outside
(ρ > b) the field will be zero.

8.14. A toroid having a cross section of rectangular shape is defined by the following surfaces: the
cylinders ρ = 2 and ρ = 3 cm, and the planes z = 1 and z = 2.5 cm. The toroid carries a
surface current density of −50az A/m on the surface ρ = 3 cm. Find H at the point P (ρ, φ, z):
The construction is similar to that of the toroid of round cross section as done on p.239. Again,
magnetic field exists only inside the toroid cross section, and is given by

H =
Iencl

2πρ
aφ (2 < ρ < 3) cm, (1 < z < 2.5) cm

where Iencl is found from the given current density: On the outer radius, the current is

Iouter = −50(2π × 3 × 10−2) = −3π A

This current is directed along negative z, which means that the current on the inner radius
(ρ = 2) is directed along positive z. Inner and outer currents have the same magnitude. It is
the inner current that is enclosed by the circular integration path in aφ within the toroid that
is used in Ampere’s law. So Iencl = +3π A. We can now proceed with what is requested:

a) PA(1.5cm, 0, 2cm): The radius, ρ = 1.5 cm, lies outside the cross section, and so HA = 0.

b) PB(2.1cm, 0, 2cm): This point does lie inside the cross section, and the φ and z values do
not matter. We find

HB =
Iencl

2πρ
aφ =

3aφ

2(2.1 × 10−2)
= 71.4aφ A/m
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8.14c) PC(2.7cm, π/2, 2cm): again, φ and z values make no difference, so

HC =
3aφ

2(2.7 × 10−2)
= 55.6aφ A/m

d) PD(3.5cm, π/2, 2cm). This point lies outside the cross section, and so HD = 0.

8.15. Assume that there is a region with cylindrical symmetry in which the conductivity is given by
σ = 1.5e−150ρ kS/m. An electric field of 30az V/m is present.
a) Find J: Use

J = σE = 45e−150ρ az kA/m2

b) Find the total current crossing the surface ρ < ρ0, z = 0, all φ:

I =
∫ ∫

J · dS =
∫ 2π

0

∫ ρ0

0

45e−150ρρ dρ dφ =
2π(45)
(150)2

e−150ρ [−150ρ − 1]
∣∣∣ρ0

0
kA

= 12.6
[
1 − (1 + 150ρ0)e−150ρ0

]
A

c) Make use of Ampere’s circuital law to find H: Symmetry suggests that H will be φ-
directed only, and so we consider a circular path of integration, centered on and perpen-
dicular to the z axis. Ampere’s law becomes: 2πρHφ = Iencl, where Iencl is the current
found in part b, except with ρ0 replaced by the variable, ρ. We obtain

Hφ =
2.00
ρ

[
1 − (1 + 150ρ)e−150ρ

]
A/m

8.16. A balanced coaxial cable contains three coaxial conductors of negligible resistance. Assume a
solid inner conductor of radius a, an intermediate conductor of inner radius bi, outer radius bo,
and an outer conductor having inner and outer radii ci and co, respectively. The intermediate
conductor carries current I in the positive az direction and is at potential V0. The inner and
outer conductors are both at zero potential, and carry currents I/2 (in each) in the negative
az direction. Assuming that the current distribution in each conductor is uniform, find:

a) J in each conductor: These expressions will be the current in each conductor divided by
the appropriate cross-sectional area. The results are:

Inner conductor : Ja = − I az

2πa2
A/m2 (0 < ρ < a)

Center conductor : Jb =
I az

π(b2
o − b2

i )
A/m2 (bi < ρ < bo)

Outer conductor : Jc = − I az

2π(c2
o − c2

i )
A/m2 (ci < ρ < co)
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8.16b) H everywhere:
For 0 < ρ < a, and with current in the negative z direction, Ampere’s circuital law applied
to a circular path of radius ρ within the given region leads to

2πρH = −πρ2Ja = −πρ2I/(2πa2) ⇒ H1 = − ρI

4πa2
aφ A/m (0 < ρ < a)

For a < ρ < bi, and with the current within in the negative z direction, Ampere’s circuital
law applied to a circular path of radius ρ within the given region leads to

2πρH = −I/2 ⇒ H2 = − I

4πρ
aφ A/m (a < ρ < bi)

Inside the center conductor, the net magnetic field will include the contribution from the
inner conductor current:

2πρH = −I/2 +
π(ρ2 − b2

i )I
π(b2

o − b2
i )

⇒ H3 =
I

4πρ

[
2(ρ2 − b2

i )
(b2

o − b2
i )

− 1
]

aφ A/m (bi < ρ < bo)

Beyond the center conductor, but before the outer conductor, the net enclosed current is
I − I/2 = I/2, and the magnetic field is

H4 =
I

4πρ
aφ (bo < ρ < ci)

Inside the outer conductor (with current again in the negative z direction) the field asso-
ciated with the outer conductor current will subtract from H4 (more so as ρ increases):

H5 =
I

4πρ

[
1 − (ρ2 − c2

i )
(c2

o − c2
i )

]
aφ A/m (ci < ρ < co)

Finally, beyond the outer conductor, the total enclosed current is zero, and so

H6 = 0 (ρ > co)

c) E everywhere: Since we have perfect conductors, the electric field within each will be zero.
This leaves the free space regions, within which Laplace’s equation will have the general
solution form, V (ρ) = C1 ln(ρ) + C2. Between radii a and bi, the boundary condition,
V = 0 at ρ = a leads to C2 = −C1 ln a. Thus V (ρ) = C1 ln(ρ/a). The boundary condition,
V = V0 at ρ = bi leads to C1 = V0/ ln(bi/a), and so finally, V (ρ) = V0 ln(ρ/a)/ ln(bi/a).
Now

E1 = −∇V = −dV

dρ
aρ = − V0

ρ ln(bi/a)
aρ V/m (a < ρ < bi)

Between radii bo and ci, the boundary condition, V = 0 at ρ = ci leads to C2 = −C1 ln ci.
Thus V (ρ) = C1 ln(ρ/ci). The boundary condition, V = V0 at ρ = bo leads to C1 =
V0/ ln(bo/ci), and so finally, V (ρ) = V0 ln(ρ/ci)/ ln(bo/ci). Now

E2 = −dV

dρ
aρ = − V0

ρ ln(bo/ci)
aρ = +

V0

ρ ln(ci/b0)
aρ V/m (bo < ρ < ci)

10



8.17. A current filament on the z axis carries a current of 7 mA in the az direction, and current
sheets of 0.5az A/m and −0.2az A/m are located at ρ = 1 cm and ρ = 0.5 cm, respectively.
Calculate H at:
a) ρ = 0.5 cm: Here, we are either just inside or just outside the first current sheet, so

both we will calculate H for both cases. Just inside, applying Ampere’s circuital law to
a circular path centered on the z axis produces:

2πρHφ = 7 × 10−3 ⇒ H(just inside) =
7 × 10−3

2π(0.5 × 10−2
aφ = 2.2 × 10−1aφ A/m

Just outside the current sheet at .5 cm, Ampere’s law becomes

2πρHφ = 7 × 10−3 − 2π(0.5 × 10−2)(0.2)

⇒ H(just outside) =
7.2 × 10−4

2π(0.5 × 10−2)
aφ = 2.3 × 10−2aφ A/m

b) ρ = 1.5 cm: Here, all three currents are enclosed, so Ampere’s law becomes

2π(1.5 × 10−2)Hφ = 7 × 10−3 − 6.28 × 10−3 + 2π(10−2)(0.5)

⇒ H(ρ = 1.5) = 3.4 × 10−1aφ A/m

c) ρ = 4 cm: Ampere’s law as used in part b applies here, except we replace ρ = 1.5 cm with
ρ = 4 cm on the left hand side. The result is H(ρ = 4) = 1.3 × 10−1aφ A/m.

d) What current sheet should be located at ρ = 4 cm so that H = 0 for all ρ > 4 cm? We
require that the total enclosed current be zero, and so the net current in the proposed
cylinder at 4 cm must be negative the right hand side of the first equation in part b. This
will be −3.2 × 10−2, so that the surface current density at 4 cm must be

K =
−3.2 × 10−2

2π(4 × 10−2)
az = −1.3 × 10−1 az A/m

8.18. A wire of 3-mm radius is made up of an inner material (0 < ρ < 2 mm) for which σ = 107

S/m, and an outer material (2mm < ρ < 3mm) for which σ = 4× 107 S/m. If the wire carries
a total current of 100 mA dc, determine H everywhere as a function of ρ.

Since the materials have different conductivities, the current densities within them will
differ. Electric field, however is constant throughout. The current can be expressed as

I = π(.002)2J1 + π[(.003)2 − (.002)2]J2 = π
[
(.002)2σ1 + [(.003)2 − (.002)2]σ2

]
E

Solve for E to obtain

E =
0.1

π[(4 × 10−6)(107) + (9 × 10−6 − 4 × 10−6)(4 × 107)]
= 1.33 × 10−4 V/m

We next apply Ampere’s circuital law to a circular path of radius ρ, where ρ < 2mm:

2πρHφ1 = πρ2J1 = πρ2σ1E ⇒ Hφ1 =
σ1Eρ

2
= 663 A/m
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8.18. (continued): Next, for the region 2mm < ρ < 3mm, Ampere’s law becomes

2πρHφ2 = π[(4 × 10−6)(107) + (ρ2 − 4 × 10−6)(4 × 107)]E

⇒ Hφ2 = 2.7 × 103ρ − 8.0 × 10−3

ρ
A/m

Finally, for ρ > 3mm, the field outside is that for a long wire:

Hφ3 =
I

2πρ
=

0.1
2πρ

=
1.6 × 10−2

ρ
A/m

8.19. Calculate ∇ × [∇(∇ · G)] if G = 2x2yz ax − 20y ay + (x2 − z2)az: Proceding, we first find
∇ · G = 4xyz − 20 − 2z. Then ∇(∇ · G) = 4yz ax + 4xz ay + (4xy − 2)az. Then

∇× [∇(∇ · G)] = (4x − 4x)ax − (4y − 4y)ay + (4z − 4z)az = 0

8.20. A solid conductor of circular cross-section with a radius of 5 mm has a conductivity that varies
with radius. The conductor is 20 m long and there is a potential difference of 0.1 V dc between
its two ends. Within the conductor, H = 105ρ2aφ A/m.

a) Find σ as a function of ρ: Start by finding J from H by taking the curl. With H
φ-directed, and varying with radius only, the curl becomes:

J = ∇× H =
1
ρ

d

dρ
(ρHφ) az =

1
ρ

d

dρ

(
105ρ3

)
az = 3 × 105ρaz A/m2

Then E = 0.1/20 = 0.005az V/m, which we then use with J = σE to find

σ =
J

E
=

3 × 105ρ

0.005
= 6 × 107ρ S/m

b) What is the resistance between the two ends? The current in the wire is

I =
∫

s

J · dS = 2π

∫ a

0

(3 × 105ρ) ρ dρ = 6π × 105

(
1
3
a3

)
= 2π × 105(0.005)3 = 0.079 A

Finally, R = V0/I = 0.1/0.079 = 1.3 Ω

8.21. Points A, B, C, D, E, and F are each 2 mm from the origin on the coordinate axes indicated
in Fig. 8.23. The value of H at each point is given. Calculate an approximate value for ∇×H
at the origin: We use the approximation:

curlH .=
∮

H · dL
∆a

where no limit as ∆a → 0 is taken (hence the approximation), and where ∆a = 4 mm2. Each
curl component is found by integrating H over a square path that is normal to the component
in question.

12



8.21. (continued) Each of the four segments of the contour passes through one of the given points.
Along each segment, the field is assumed constant, and so the integral is evaluated by summing
the products of the field and segment length (4 mm) over the four segments. The x component
of the curl is thus:

(∇× H)x
.=

(Hz,C − Hy,E − Hz,D + Hy,F )(4 × 10−3)
(4 × 10−3)2

= (15.69 + 13.88 − 14.35 − 13.10)(250) = 530 A/m2

The other components are:

(∇× H)y
.=

(Hz,B + Hx,E − Hz,A − Hx,F )(4 × 10−3)
(4 × 10−3)2

= (15.82 + 11.11 − 14.21 − 10.88)(250) = 460 A/m2

and

(∇× H)z
.=

(Hy,A − Hx,C − Hy,BHx,D)(4 × 10−3)
(4 × 10−3)2

= (−13.78 − 10.49 + 12.19 + 11.49)(250) = −148 A/m2

Finally we assemble the results and write:

∇× H .= 530ax + 460ay − 148az

8.22. A solid cylinder of radius a and length L, where L >> a, contains volume charge of uniform
density ρ0 C/m3. The cylinder rotates about its axis (the z axis) at angular velocity Ω rad/s.

a) Determine the current density J, as a function of position within the rotating cylinder:
Use J = ρ0v = ρ0ρΩaφ A/m2.

b) Determine the magnetic field intensity H inside and outside: It helps initially to obtain
the field on-axis. To do this, we use the result of Problem 8.6, but give the rotating
charged disk in that problem a differential thickness, dz. We can then evaluate the on-
axis field in the rotating cylinder as the superposition of fields from a stack of disks which
exist between ±L/2. Here, we make the problem easier by letting L → ∞ (since L >> a)
thereby specializing our evaluation to positions near the half-length. The on-axis field is
therefore:

Hz(ρ = 0) =
∫ ∞

−∞

ρ0Ω
2z


a2 + 2z2

(
1 −

√
1 + a2/z2

)
√

1 + a2/z2


 dz

= 2
∫ ∞

0

ρ0Ω
2

[
a2

√
z2 + a2

+
2z2

√
z2 + a2

− 2z

]
dz

= 2ρ0Ω
[
a2

2
ln(z +

√
z2 + a2) +

z

2

√
z2 + a2 − a2

2
ln(z +

√
z2 + a2) − z2

2

]∞

0

= ρ0Ω
[
z
√

z2 + a2 − z2
]∞
0

= ρ0Ω
[
z
√

z2 + a2 − z2
]

z→∞

Using the large z approximation in the radical, we obtain

Hz(ρ = 0) = ρ0Ω
[
z2

(
1 +

a2

2z2

)
− z2

]
=

ρ0Ωa2

2
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8.22. (continued). To find the field as a function of radius, we apply Ampere’s circuital law to a
rectangular loop, drawn in two locations described as follows: First, construct the rectangle
with one side along the z axis, and with the opposite side lying at any radius outside the
cylinder. In taking the line integral of H around the rectangle, we note that the two segments
that are perpendicular to the cylinder axis will have their path integrals exactly cancel, since
the two path segments are oppositely-directed, while from symmetry the field should not be
different along each segment. This leaves only the path segment that coindides with the axis,
and that lying parallel to the axis, but outside. Choosing the length of these segments to be
�, Ampere’s circuital law becomes:∮

H · dL = Hz(ρ = 0)� + Hz(ρ > a)� = Iencl =
∫

s

J · dS =
∫ �

0

∫ a

0

ρ0ρΩaφ · aφ dρ dz

= �
ρ0Ωa2

2

But we found earlier that Hz(ρ = 0) = ρ0Ωa2/2. Therefore, we identify the outside field,
Hz(ρ > a) = 0. Next, change the rectangular path only by displacing the central path
component off-axis by distance ρ, but still lying within the cylinder. The enclosed current is
now somewhat less, and Ampere’s law becomes∮

H · dL = Hz(ρ)� + Hz(ρ > a)� = Iencl =
∫

s

J · dS =
∫ �

0

∫ a

ρ

ρ0ρ
′Ωaφ · aφ dρ dz

= �
ρ0Ω
2

(a2 − ρ2) ⇒ H(ρ) =
ρ0Ω
2

(a2 − ρ2)az A/m

c) Check your result of part b by taking the curl of H. With H z-directed, and varying only
with ρ, the curl in cylindrical coordinates becomes

∇× H = −dHz

dρ
aφ = ρ0Ωρaφ A/m2 = J

as expected.

8.23. Given the field H = 20ρ2 aφ A/m:
a) Determine the current density J: This is found through the curl of H, which simplifies

to a single term, since H varies only with ρ and has only a φ component:

J = ∇× H =
1
ρ

d(ρHφ)
dρ

az =
1
ρ

d

dρ

(
20ρ3

)
az = 60ρaz A/m2

b) Integrate J over the circular surface ρ = 1, 0 < φ < 2π, z = 0, to determine the total
current passing through that surface in the az direction: The integral is:

I =
∫ ∫

J · dS =
∫ 2π

0

∫ 1

0

60ρaz · ρ dρ dφaz = 40π A

c) Find the total current once more, this time by a line integral around the circular path
ρ = 1, 0 < φ < 2π, z = 0:

I =
∮

H · dL =
∫ 2π

0

20ρ2 aφ

∣∣
ρ=1

· (1)dφaφ =
∫ 2π

0

20 dφ = 40π A
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8.24. Evaluate both sides of Stokes’ theorem for the field G = 10 sin θ aφ and the surface r = 3,
0 ≤ θ ≤ 90◦, 0 ≤ φ ≤ 90◦. Let the surface have the ar direction: Stokes’ theorem reads:∮

C

G · dL =
∫ ∫

S

(∇× G) · n da

Considering the given surface, the contour, C, that forms its perimeter consists of three joined
arcs of radius 3 that sweep out 90◦ in the xy, xz, and zy planes. Their centers are at the
origin. Of these three, only the arc in the xy plane (which lies along aφ) is in the direction of
G; the other two (in the −aθ and aθ directions respectively) are perpendicular to it, and so
will not contribute to the path integral. The left-hand side therefore consists of only the xy
plane portion of the closed path, and evaluates as

∮
G · dL =

∫ π/2

0

10 sin θ
∣∣
π/2

aφ · aφ 3 sin θ
∣∣
π/2

dφ = 15π

To evaluate the right-hand side, we first find

∇× G =
1

r sin θ

d

dθ
[(sin θ)10 sin θ] ar =

20 cos θ

r
ar

The surface over which we integrate this is the one-eighth spherical shell of radius 3 in the
first octant, bounded by the three arcs described earlier. The right-hand side becomes

∫ ∫
S

(∇× G) · n da =
∫ π/2

0

∫ π/2

0

20 cos θ

3
ar · ar (3)2 sin θ dθ dφ = 15π

It would appear that the theorem works.

8.25. When x, y, and z are positive and less than 5, a certain magnetic field intensity may be
expressed as H = [x2yz/(y +1)]ax +3x2z2ay − [xyz2/(y +1)]az. Find the total current in the
ax direction that crosses the strip, x = 2, 1 ≤ y ≤ 4, 3 ≤ z ≤ 4, by a method utilizing:

a) a surface integral: We need to find the current density by taking the curl of the given H.
Actually, since the strip lies parallel to the yz plane, we need only find the x component
of the current density, as only this component will contribute to the requested current.
This is

Jx = (∇× H)x =
(

∂Hz

∂y
− ∂Hy

∂z

)
= −

(
xz2

(y + 1)2
+ 6x2z

)
ax

The current through the strip is then

I =
∫

s

J · ax da = −
∫ 4

3

∫ 4

1

(
2z2

(y + 1)2
+ 24z

)
dy dz = −

∫ 4

3

( −2z2

(y + 1)
+ 24zy

)4

1

dz

= −
∫ 4

3

(
3
5
z2 + 72z

)
dz = −

(
1
5
z3 + 36z2

)4

3

= −259
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8.25b.) a closed line integral: We integrate counter-clockwise around the strip boundary (using the
right-hand convention), where the path normal is positive ax. The current is then

I =
∮

H · dL =
∫ 4

1

3(2)2(3)2 dy +
∫ 4

3

− 2(4)z2

(4 + 1)
dz +

∫ 1

4

3(2)2(4)2 dy +
∫ 3

4

− 2(1)z2

(1 + 1)
dz

= 108(3) − 8
15

(43 − 33) + 192(1 − 4) − 1
3
(33 − 43) = −259

8.26. Let G = 15raφ.
a) Determine

∮
G · dL for the circular path r = 5, θ = 25◦, 0 ≤ φ ≤ 2π:

∮
G · dL =

∫ 2π

0

15(5)aφ · aφ(5) sin(25◦) dφ = 2π(375) sin(25◦) = 995.8

b) Evaluate
∫

S
(∇× G) · dS over the spherical cap r = 5, 0 ≤ θ ≤ 25◦, 0 ≤ φ ≤ 2π: When

evaluating the curl of G using the formula in spherical coordinates, only one of the six
terms survives:

∇× G =
1

r sin θ

∂(Gφ sin θ)
∂θ

ar =
1

r sin θ
15r cos θ ar = 15 cot θ ar

Then ∫
S

(∇× G) · dS =
∫ 2π

0

∫ 25◦

0

15 cot θ ar · ar (5)2 sin θ dθ dφ

= 2π

∫ 25◦

0

15 cos θ(25) dθ = 2π(15)(25) sin(25◦) = 995.8

8.27. The magnetic field intensity is given in a certain region of space as

H =
x + 2y

z2
ay +

2
z

az A/m

a) Find ∇×H: For this field, the general curl expression in rectangular coordinates simplifies
to

∇× H = −∂Hy

∂z
ax +

∂Hy

∂x
az =

2(x + 2y)
z3

ax +
1
z2

az A/m

b) Find J: This will be the answer of part a, since ∇× H = J.

c) Use J to find the total current passing through the surface z = 4, 1 < x < 2, 3 < y < 5,
in the az direction: This will be

I =
∫ ∫

J
∣∣
z=4

· az dx dy =
∫ 5

3

∫ 2

1

1
42

dx dy = 1/8 A
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8.27d) Show that the same result is obtained using the other side of Stokes’ theorem: We take∮
H · dL over the square path at z = 4 as defined in part c. This involves two integrals of the

y component of H over the range 3 < y < 5. Integrals over x, to complete the loop, do not
exist since there is no x component of H. We have

I =
∮

H
∣∣
z=4

· dL =
∫ 5

3

2 + 2y

16
dy +

∫ 3

5

1 + 2y

16
dy =

1
8
(2) − 1

16
(2) = 1/8 A

8.28. Given H = (3r2/ sin θ)aθ + 54r cos θaφ A/m in free space:
a) find the total current in the aθ direction through the conical surface θ = 20◦, 0 ≤ φ ≤ 2π,

0 ≤ r ≤ 5, by whatever side of Stokes’ theorem you like best. I chose the line integral
side, where the integration path is the circular path in φ around the top edge of the cone,
at r = 5. The path direction is chosen to be clockwise looking down on the xy plane.
This, by convention, leads to the normal from the cone surface that points in the positive
aθ direction (right hand rule). We find

∮
H · dL =

∫ 2π

0

[
(3r2/ sin θ)aθ + 54r cos θaφ

]
r=5,θ=20

· 5 sin(20◦) dφ (−aφ)

= −2π(54)(25) cos(20◦) sin(20◦) = −2.73 × 103 A

This result means that there is a component of current that enters the cone surface in
the −aθ direction, to which is associated a component of H in the positive aφ direction.

b) Check the result by using the other side of Stokes’ theorem: We first find the current
density through the curl of the magnetic field, where three of the six terms in the spherical
coordinate formula survive:

∇× H =
1

r sin θ

∂

∂θ
(54r cos θ sin θ)) ar −

1
r

∂

∂r

(
54r2 cos θ

)
aθ +

1
r

∂

∂r

(
3r3

sin θ

)
aφ = J

Thus
J = 54 cot θ ar − 108 cos θ aθ +

9r

sin θ
aφ

The calculation of the other side of Stokes’ theorem now involves integrating J over the
surface of the cone, where the outward normal is positive aθ, as defined in part a:

∫
S

(∇× H) · dS =
∫ 2π

0

∫ 5

0

[
54 cot θ ar − 108 cos θ aθ +

9r

sin θ
aφ

]
20◦

· aθ r sin(20◦) dr dφ

= −
∫ 2π

0

∫ 5

0

108 cos(20◦) sin(20◦)rdrdφ = −2π(54)(25) cos(20◦) sin(20◦)

= −2.73 × 103 A
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8.29. A long straight non-magnetic conductor of 0.2 mm radius carries a uniformly-distributed
current of 2 A dc.
a) Find J within the conductor: Assuming the current is +z directed,

J =
2

π(0.2 × 10−3)2
az = 1.59 × 107 az A/m2

b) Use Ampere’s circuital law to find H and B within the conductor: Inside, at radius ρ, we
have

2πρHφ = πρ2J ⇒ H =
ρJ

2
aφ = 7.96 × 106ρaφ A/m

Then B = µ0H = (4π × 10−7)(7.96 × 106)ρaφ = 10ρaφ Wb/m2.

c) Show that ∇× H = J within the conductor: Using the result of part b, we find,

∇× H =
1
ρ

d

dρ
(ρHφ)az =

1
ρ

d

dρ

(
1.59 × 107ρ2

2

)
az = 1.59 × 107 az A/m2 = J

d) Find H and B outside the conductor (note typo in book): Outside, the entire current is
enclosed by a closed path at radius ρ, and so

H =
I

2πρ
aφ =

1
πρ

aφ A/m

Now B = µ0H = µ0/(πρ)aφ Wb/m2.

e) Show that ∇× H = J outside the conductor: Here we use H outside the conductor and
write:

∇× H =
1
ρ

d

dρ
(ρHφ)az =

1
ρ

d

dρ

(
ρ

1
πρ

)
az = 0 (as expected)

8.30. (an inversion of Problem 8.20). A solid nonmagnetic conductor of circular cross-section has
a radius of 2mm. The conductor is inhomogeneous, with σ = 106(1 + 106ρ2) S/m. If the
conductor is 1m in length and has a voltage of 1mV between its ends, find:
a) H inside: With current along the cylinder length (along az, and with φ symmetry, H

will be φ-directed only. We find E = (V0/d)az = 10−3az V/m. Then J = σE =
103(1+106ρ2)az A/m2. Next we apply Ampere’s circuital law to a circular path of radius
ρ, centered on the z axis and normal to the axis:∮

H · dL = 2πρHφ =
∫ ∫

S

J · dS =
∫ 2π

0

∫ ρ

0

103(1 + 106(ρ′)2)az · azρ
′dρ′dφ

Thus

Hφ =
103

ρ

∫ ρ

0

ρ′ + 106(ρ′)3dρ′ =
103

ρ

[
ρ2

2
+

106

4
ρ4

]
Finally, H = 500ρ(1 + 5 × 105ρ3)aφ A/m (0 < ρ < 2mm).

b) the total magnetic flux inside the conductor: With field in the φ direction, a plane normal
to B will be that in the region 0 < ρ < 2 mm, 0 < z < 1 m. The flux will be

Φ =
∫ ∫

S

B·dS = µ0

∫ 1

0

∫ 2×10−3

0

(
500ρ + 2.5 × 108ρ3

)
dρdz = 8π×10−10 Wb = 2.5 nWb
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8.31. The cylindrical shell defined by 1 cm < ρ < 1.4 cm consists of a non-magnetic conducting
material and carries a total current of 50 A in the az direction. Find the total magnetic flux
crossing the plane φ = 0, 0 < z < 1:

a) 0 < ρ < 1.2 cm: We first need to find J, H, and B: The current density will be:

J =
50

π[(1.4 × 10−2)2 − (1.0 × 10−2)2]
az = 1.66 × 105 az A/m2

Next we find Hφ at radius ρ between 1.0 and 1.4 cm, by applying Ampere’s circuital law,
and noting that the current density is zero at radii less than 1 cm:

2πρHφ = Iencl =
∫ 2π

0

∫ ρ

10−2
1.66 × 105ρ′ dρ′ dφ

⇒ Hφ = 8.30 × 104 (ρ2 − 10−4)
ρ

A/m (10−2 m < ρ < 1.4 × 10−2 m)

Then B = µ0H, or

B = 0.104
(ρ2 − 10−4)

ρ
aφ Wb/m2

Now,

Φa =
∫ ∫

B · dS =
∫ 1

0

∫ 1.2×10−2

10−2
0.104

[
ρ − 10−4

ρ

]
dρ dz

= 0.104
[
(1.2 × 10−2)2 − 10−4

2
− 10−4 ln

(
1.2
1.0

)]
= 3.92 × 10−7 Wb = 0.392 µWb

b) 1.0 cm < ρ < 1.4 cm (note typo in book): This is part a over again, except we change the
upper limit of the radial integration:

Φb =
∫ ∫

B · dS =
∫ 1

0

∫ 1.4×10−2

10−2
0.104

[
ρ − 10−4

ρ

]
dρ dz

= 0.104
[
(1.4 × 10−2)2 − 10−4

2
− 10−4 ln

(
1.4
1.0

)]
= 1.49 × 10−6 Wb = 1.49 µWb

c) 1.4 cm < ρ < 20 cm: This is entirely outside the current distribution, so we need B there:
We modify the Ampere’s circuital law result of part a to find:

Bout = 0.104
[(1.4 × 10−2)2 − 10−4]

ρ
aφ =

10−5

ρ
aφ Wb/m2

We now find

Φc =
∫ 1

0

∫ 20×10−2

1.4×10−2

10−5

ρ
dρ dz = 10−5 ln

(
20
1.4

)
= 2.7 × 10−5 Wb = 27µWb
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8.32. The free space region defined by 1 < z < 4 cm and 2 < ρ < 3 cm is a toroid of rectangular
cross-section. Let the surface at ρ = 3 cm carry a surface current K = 2az kA/m.
a) Specify the current densities on the surfaces at ρ = 2 cm, z = 1cm, and z = 4cm.

All surfaces must carry equal currents. With this requirement, we find: K(ρ = 2) =
−3az kA/m. Next, the current densities on the z = 1 and z = 4 surfaces must transistion
between the current density values at ρ = 2 and ρ = 3. Knowing the the radial current
density will vary as 1/ρ, we find K(z = 1) = (60/ρ)aρ A/m with ρ in meters. Similarly,
K(z = 4) = −(60/ρ)aρ A/m.

b) Find H everywhere: Outside the toroid, H = 0. Inside, we apply Ampere’s circuital law
in the manner of Problem 8.14:∮

H · dL = 2πρHφ =
∫ 2π

0

K(ρ = 2) · az (2 × 10−2) dφ

⇒ H = −2π(3000)(.02)
ρ

aφ = −60/ρaφ A/m (inside)

c) Calculate the total flux within the toriod: We have B = −(60µ0/ρ)aφ Wb/m2. Then

Φ =
∫ .04

.01

∫ .03

.02

−60µ0

ρ
aφ · (−aφ) dρ dz = (.03)(60)µ0 ln

(
3
2

)
= 0.92 µWb

8.33. Use an expansion in rectangular coordinates to show that the curl of the gradient of any scalar
field G is identically equal to zero. We begin with

∇G =
∂G

∂x
ax +

∂G

∂y
ay +

∂G

∂z
az

and

∇×∇G =
[

∂

∂y

(
∂G

∂z

)
− ∂

∂z

(
∂G

∂y

)]
ax +

[
∂

∂z

(
∂G

∂x

)
− ∂

∂x

(
∂G

∂z

)]
ay

+
[

∂

∂x

(
∂G

∂y

)
− ∂

∂y

(
∂G

∂x

)]
az = 0 for any G

8.34. A filamentary conductor on the z axis carries a current of 16A in the az direction, a conducting
shell at ρ = 6 carries a total current of 12A in the −az direction, and another shell at ρ = 10
carries a total current of 4A in the −az direction.
a) Find H for 0 < ρ < 12: Ampere’s circuital law states that

∮
H · dL = Iencl, where the

line integral and current direction are related in the usual way through the right hand
rule. Therefore, if I is in the positive z direction, H is in the aφ direction. We proceed
as follows:

0 < ρ < 6 : 2πρHφ = 16 ⇒ H = 16/(2πρ)aφ

6 < ρ < 10 : 2πρHφ = 16 − 12 ⇒ H = 4/(2πρ)aφ

ρ > 10 : 2πρHφ = 16 − 12 − 4 = 0 ⇒ H = 0
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8.34b) Plot Hφ vs. ρ:

c) Find the total flux Φ crossing the surface 1 < ρ < 7, 0 < z < 1: This will be

Φ =
∫ 1

0

∫ 6

1

16µ0

2πρ
dρ dz +

∫ 1

0

∫ 7

6

4µ0

2πρ
dρ dz =

2µ0

π
[4 ln 6 + ln(7/6)] = 5.9 µWb

8.35. A current sheet, K = 20az A/m, is located at ρ = 2, and a second sheet, K = −10az A/m is
located at ρ = 4.
a.) Let Vm = 0 at P (ρ = 3, φ = 0, z = 5) and place a barrier at φ = π. Find Vm(ρ, φ, z) for

−π < φ < π: Since the current is cylindrically-symmetric, we know that H = I/(2πρ) aφ,
where I is the current enclosed, equal in this case to 2π(2)K = 80π A. Thus, using the
result of Section 8.6, we find

Vm = − I

2π
φ = −80π

2π
φ = −40φ A

which is valid over the region 2 < ρ < 4, −π < φ < π, and −∞ < z < ∞. For ρ > 4, the
outer current contributes, leading to a total enclosed current of

Inet = 2π(2)(20) − 2π(4)(10) = 0

With zero enclosed current, Hφ = 0, and the magnetic potential is zero as well.

b) Let A = 0 at P and find A(ρ, φ, z) for 2 < ρ < 4: Again, we know that H = Hφ(ρ),
since the current is cylindrically symmetric. With the current only in the z direction, and
again using symmmetry, we expect only a z component of A which varies only with ρ.
We can then write:

∇× A = −dAz

dρ
aφ = B =

µ0I

2πρ
aφ

Thus
dAz

dρ
= −µ0I

2πρ
⇒ Az = −µ0I

2π
ln(ρ) + C
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8.35b. (continued). We require that Az = 0 at ρ = 3. Therefore C = [(µ0I)/(2π)] ln(3), Then, with
I = 80π, we finally obtain

A = −µ0(80π)
2π

[ln(ρ) − ln(3)]az = 40µ0 ln
(

3
ρ

)
az Wb/m

8.36. Let A = (3y − z)ax + 2xzay Wb/m in a certain region of free space.
a) Show that ∇ · A = 0:

∇ · A =
∂

∂x
(3y − z) +

∂

∂y
2xz = 0

b) At P (2,−1, 3), find A, B, H, and J: First AP = −6ax + 12ay. Then, using the curl
formula in cartesian coordinates,

B = ∇× A = −2xax − ay + (2z − 3)az ⇒ BP = −4ax − ay + 3az Wb/m2

Now
HP = (1/µ0)BP = −3.2 × 106ax − 8.0 × 105ay + 2.4 × 106az A/m

Then J = ∇×H = (1/µ0)∇×B = 0, as the curl formula in cartesian coordinates shows.

8.37. Let N = 1000, I = 0.8 A, ρ0 = 2 cm, and a = 0.8 cm for the toroid shown in Fig. 8.12b. Find
Vm in the interior of the toroid if Vm = 0 at ρ = 2.5 cm, φ = 0.3π. Keep φ within the range
0 < φ < 2π: Well-within the toroid, we have

H =
NI

2πρ
aφ = −∇Vm = −1

ρ

dVm

dφ
aφ

Thus
Vm = −NIφ

2π
+ C

Then,

0 = −1000(0.8)(0.3π)
2π

+ C

or C = 120. Finally

Vm =
[
120 − 400

π
φ

]
A (0 < φ < 2π)
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8.38. Assume a direct current I amps flowing in the az direction in a filament extending between
−L < z < L on the z axis.

a) Using cylindrical coordinates, find A at any general point P (ρ, 0◦, z): Let z′ locate a vari-
able position on the wire, in which case the distance from that position to the observation
point is R =

√
(z − z′)2 + ρ2. The vector potential is now

A =
∫

wire

µ0I dL
4πR

=
∫ L

−L

µ0Idz′ az

4π
√

(z − z′)2 + ρ2

I evaluated this using integral tables. The simplest form in this case is that involving the
inverse hyperbolic sine. The result is

Az =
µ0I

4π

[
sinh−1

(
L − z

ρ

)
− sinh−1

(−(L + z)
ρ

)]

b) From part a, find B and H: B is found from the curl of A, which, in the present case of
A having only a z component, and varying only with ρ and z, simplifies to

B = ∇× A = −∂Az

∂ρ
aφ =

µ0I

4πρ

[
1√

1 + ρ2/(L − z)2
+

1√
1 + ρ2/(L + z)2

]
aφ

The magnetic field strength, H, is then just B/µ0.

c) Let L → ∞ and show that the expression for H reduces to the known one for an infinite
filament: From the result of part b, we can observe that letting L → ∞ causes the terms
within the brackets to reduce to a simple factor of 2. Therefore, B → µ0I/(2πρ)aφ, and
H → I/(2πρ)aφ in this limit, as expected.

8.39. Planar current sheets of K = 30az A/m and −30az A/m are located in free space at x = 0.2
and x = −0.2 respectively. For the region −0.2 < x < 0.2:
a) Find H: Since we have parallel current sheets carrying equal and opposite currents, we

use Eq. (12), H = K×aN , where aN is the unit normal directed into the region between
currents, and where either one of the two currents are used. Choosing the sheet at x = 0.2,
we find

H = 30az ×−ax = −30ay A/m

b) Obtain and expression for Vm if Vm = 0 at P (0.1, 0.2, 0.3): Use

H = −30ay = −∇Vm = −dVm

dy
ay

So
dVm

dy
= 30 ⇒ Vm = 30y + C1

Then
0 = 30(0.2) + C1 ⇒ C1 = −6 ⇒ Vm = 30y − 6 A
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8.39c) Find B: B = µ0H = −30µ0ay Wb/m2.

d) Obtain an expression for A if A = 0 at P : We expect A to be z-directed (with the
current), and so from ∇× A = B, where B is y-directed, we set up

−dAz

dx
= −30µ0 ⇒ Az = 30µ0x + C2

Then 0 = 30µ0(0.1) + C2 ⇒ C2 = −3µ0. So finally A = µ0(30x − 3)az Wb/m.

8.40. Show that the line integral of the vector potential A about any closed path is equal to the
magnetic flux enclosed by the path, or

∮
A · dL =

∫
B · dS.

We use the fact that B = ∇× A, and substitute this into the desired relation to find∮
A · dL =

∫
∇× A · dS

This is just a statement of Stokes’ theorem (already proved), so we are done.

8.41. Assume that A = 50ρ2az Wb/m in a certain region of free space.
a) Find H and B: Use

B = ∇× A = −∂Az

∂ρ
aφ = −100ρaφ Wb/m2

Then H = B/µ0 = −100ρ/µ0 aφ A/m.

b) Find J: Use

J = ∇× H =
1
ρ

∂

∂ρ
(ρHφ)az =

1
ρ

∂

∂ρ

(−100ρ2

µ0

)
az = −200

µ0
az A/m2

c) Use J to find the total current crossing the surface 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π, z = 0: The
current is

I =
∫ ∫

J · dS =
∫ 2π

0

∫ 1

0

−200
µ0

az · az ρ dρ dφ =
−200π

µ0
A = −500 MA

d) Use the value of Hφ at ρ = 1 to calculate
∮

H · dL for ρ = 1, z = 0: Have∮
H · dL = I =

∫ 2π

0

−100
µ0

aφ · aφ (1)dφ =
−200π

µ0
A = −500 MA

8.42. Show that ∇2(1/R12) = −∇1(1/R12) = R21/R3
12. First

∇2

(
1

R12

)
= ∇2

[
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

]−1/2

= −1
2

[
2(x2 − x1)ax + 2(y2 − y1)ay + 2(z2 − z1)az

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]3/2

]
=

−R12

R3
12

=
R21

R3
12

Also note that ∇1(1/R12) would give the same result, but of opposite sign.
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8.43. Compute the vector magnetic potential within the outer conductor for the coaxial line whose
vector magnetic potential is shown in Fig. 8.20 if the outer radius of the outer conductor
is 7a. Select the proper zero reference and sketch the results on the figure: We do this by
first finding B within the outer conductor and then “uncurling” the result to find A. With
−z-directed current I in the outer conductor, the current density is

Jout = − I

π(7a)2 − π(5a)2
az = − I

24πa2
az

Since current I flows in both conductors, but in opposite directions, Ampere’s circuital law
inside the outer conductor gives:

2πρHφ = I −
∫ 2π

0

∫ ρ

5a

I

24πa2
ρ′ dρ′ dφ ⇒ Hφ =

I

2πρ

[
49a2 − ρ2

24a2

]
Now, with B = µ0H, we note that ∇×A will have a φ component only, and from the direction
and symmetry of the current, we expect A to be z-directed, and to vary only with ρ. Therefore

∇× A = −dAz

dρ
aφ = µ0H

and so
dAz

dρ
= −µ0I

2πρ

[
49a2 − ρ2

24a2

]
Then by direct integration,

Az =
∫ −µ0I(49)

48πρ
dρ +

∫
µ0Iρ

48πa2
dρ + C =

µ0I

96π

[
ρ2

a2
− 98 ln ρ

]
+ C

As per Fig. 8.20, we establish a zero reference at ρ = 5a, enabling the evaluation of the
integration constant:

C = −µ0I

96π
[25 − 98 ln(5a)]

Finally,

Az =
µ0I

96π

[(
ρ2

a2
− 25

)
+ 98 ln

(
5a

ρ

)]
Wb/m

A plot of this continues the plot of Fig. 8.20, in which the curve goes negative at ρ = 5a, and
then approaches a minimum of −.09µ0I/π at ρ = 7a, at which point the slope becomes zero.

8.44. By expanding Eq.(58), Sec. 8.7 in cartesian coordinates, show that (59) is correct. Eq. (58)
can be rewritten as

∇2A = ∇(∇ · A) −∇×∇× A

We begin with

∇ · A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

Then the x component of ∇(∇ · A) is

[∇(∇ · A)]x =
∂2Ax

∂x2
+

∂2Ay

∂x∂y
+

∂2Az

∂x∂z
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8.44. (continued). Now

∇× A =
(

∂Az

∂y
− ∂Ay

∂z

)
ax +

(
∂Ax

∂z
− ∂Az

∂x

)
ay +

(
∂Ay

∂x
− ∂Ax

∂y

)
az

and the x component of ∇×∇× A is

[∇×∇× A]x =
∂2Ay

∂x∂y
− ∂2Ax

∂y2
− ∂2Ax

∂z2
+

∂2Az

∂z∂y

Then, using the underlined results

[∇(∇ · A) −∇×∇× A]x =
∂2Ax

∂x2
+

∂2Ax

∂y2
+

∂2Ax

∂z2
= ∇2Ax

Similar results will be found for the other two components, leading to

∇(∇ · A) −∇×∇× A = ∇2Axax + ∇2Ayay + ∇2Azaz ≡ ∇2A QED
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CHAPTER 9

9.1. A point charge, Q = −0.3 µC and m = 3 × 10−16 kg, is moving through the field E = 30az V/m.
Use Eq. (1) and Newton’s laws to develop the appropriate differential equations and solve them,
subject to the initial conditions at t = 0: v = 3 × 105 ax m/s at the origin. At t = 3µs, find:
a) the position P (x, y, z) of the charge: The force on the charge is given by F = qE, and Newton’s

second law becomes:

F = ma = m
d2z
dt2

= qE = (−0.3 × 10−6)(30az)

describing motion of the charge in the z direction. The initial velocity in x is constant, and
so no force is applied in that direction. We integrate once:

dz

dt
= vz =

qE

m
t + C1

The initial velocity along z, vz(0) is zero, and so C1 = 0. Integrating a second time yields the
z coordinate:

z =
qE

2m
t2 + C2

The charge lies at the origin at t = 0, and so C2 = 0. Introducing the given values, we find

z =
(−0.3 × 10−6)(30)

2 × 3 × 10−16
t2 = −1.5 × 1010t2 m

At t = 3 µs, z = −(1.5 × 1010)(3 × 10−6)2 = −.135 cm. Now, considering the initial constant
velocity in x, the charge in 3 µs attains an x coordinate of x = vt = (3×105)(3×10−6) = .90 m.
In summary, at t = 3 µs we have P (x, y, z) = (.90, 0,−.135).

b) the velocity, v: After the first integration in part a, we find

vz =
qE

m
t = −(3 × 1010)(3 × 10−6) = −9 × 104 m/s

Including the intial x-directed velocity, we finally obtain v = 3 × 105 ax − 9 × 104az m/s.

c) the kinetic energy of the charge: Have

K.E. =
1
2
m|v|2 =

1
2
(3 × 10−16)(1.13 × 105)2 = 1.5 × 10−5 J

9.2. A point charge, Q = −0.3 µC and m = 3 × 10−16 kg, is moving through the field B = 30az mT.
Make use of Eq. (2) and Newton’s laws to develop the appropriate differential equations, and solve
them, subject to the initial condition at t = 0, v = 3×105 m/s at the origin. Solve these equations
(perhaps with the help of an example given in Section 7.5) to evaluate at t = 3µs: a) the position
P (x, y, z) of the charge; b) its velocity; c) and its kinetic energy:

We begin by visualizing the problem. Using F = qv × B, we find that a positive charge moving
along positive ax, would encounter the z-directed B field and be deflected into the negative y
direction.
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9.2 (continued) Motion along negative y through the field would cause further deflection into the
negative x direction. We can construct the differential equations for the forces in x and in y as
follows:

Fxax = m
dvx

dt
ax = qvyay × Baz = qBvyax

Fyay = m
dvy

dt
ay = qvxax × Baz = −qBvxay

or
dvx

dt
=

qB

m
vy (1)

and
dvy

dt
= −qB

m
vx (2)

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

d2vy

dt2
= −qB

m

dvx

dt
= −

(
qB

m

)2

vy

Therefore, vy = A sin(qBt/m) + A′ cos(qBt/m). However, at t = 0, vy = 0, and so A′ = 0, leaving
vy = A sin(qBt/m). Then, using (2),

vx = − m

qB

dvy

dt
= −A cos

(
qBt

m

)

Now at t = 0, vx = vx0 = 3 × 105. Therefore A = −vx0, and so vx = vx0 cos(qBt/m), and
vy = −vx0 sin(qBt/m). The positions are then found by integrating vx and vy over time:

x(t) =
∫

vx0 cos
(

qBt

m

)
dt + C =

mvx0

qB
sin

(
qBt

m

)
+ C

where C = 0, since x(0) = 0. Then

y(t) =
∫

−vx0 sin
(

qBt

m

)
dt + D =

mvx0

qB
cos

(
qBt

m

)
+ D

We require that y(0) = 0, so D = −(mvx0)/(qB), and finally y(t) = −mvx0/qB [1 − cos (qBt/m)].
Summarizing, we have, using q = −3 × 10−7 C, m = 3 × 10−16 kg, B = 30 × 10−3 T, and
vx0 = 3 × 105 m/s:

x(t) =
mvx0

qB
sin

(
qBt

m

)
= −10−2 sin(−3 × 10−7t) m

y(t) = −mvx0

qB

[
1 − cos

(
qBt

m

)]
= 10−2[1 − cos(−3 × 107t)] m

vx(t) = vx0 cos
(

qBt

m

)
= 3 × 105 cos(−3 × 107t) m/s

vy(t) = −vx0 sin
(

qBt

m

)
= −3 × 105 sin(−3 × 107t) m/s
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9.2 (continued) The answers are now:

a) At t = 3 × 10−6 s, x = 8.9 mm, y = 14.5 mm, and z = 0.

b) At t = 3 × 10−6 s, vx = −1.3 × 105 m/s, vy = 2.7 × 105 m/s, and so

v(t = 3µs) = −1.3 × 105ax + 2.7 × 105ay m/s

whose magnitude is v = 3 × 105 m/s as would be expected.

c) Kinetic energy is K.E. = (1/2)mv2 = 1.35 µJ at all times.

9.3. A point charge for which Q = 2× 10−16 C and m = 5× 10−26 kg is moving in the combined fields
E = 100ax − 200ay + 300az V/m and B = −3ax + 2ay − az mT. If the charge velocity at t = 0 is
v(0) = (2ax − 3ay − 4az) × 105 m/s:
a) give the unit vector showing the direction in which the charge is accelerating at t = 0: Use

F(t = 0) = q[E + (v(0) × B)], where

v(0) × B = (2ax − 3ay − 4az)105 × (−3ax + 2ay − az)10−3 = 1100ax + 1400ay − 500az

So the force in newtons becomes

F(0) = (2×10−16)[(100+1100)ax+(1400−200)ay +(300−500)az] = 4×10−14[6ax+6ay−az]

The unit vector that gives the acceleration direction is found from the force to be

aF =
6ax + 6ay − az√

73
= .70ax + .70ay − .12az

b) find the kinetic energy of the charge at t = 0:

K.E. =
1
2
m|v(0)|2 =

1
2
(5 × 10−26 kg)(5.39 × 105 m/s)2 = 7.25 × 10−15 J = 7.25 fJ

9.4. Show that a charged particle in a uniform magnetic field describes a circular orbit with an orbital
period that is independent of the radius. Find the relationship between the angular velocity and
magnetic flux density for an electron (the cyclotron frequency).

A circular orbit can be established if the magnetic force on the particle is balanced by the
centripital force associated with the circular path. We assume a circular path of radius R, in
which B = B0 az is normal to the plane of the path. Then, with particle angular velocity Ω, the
velocity is v = RΩaφ. The magnetic force is then Fm = qv×B = qRΩaφ×B0 az = qRΩB0 aρ.
This force will be negative (pulling the particle toward the center of the path) if the charge
is positive and motion is in the −aφ direction, or if the charge is negative, and motion is in
positive aφ. In either case, the centripital force must counteract the magnetic force. Assuming
particle mass m, the force balance equation is qRΩB0 = mΩ2R, from which Ω = qB0/m. The
revolution period is T = 2π/Ω = 2πm/(qB0), which is independent of R. For an electron, we
have q = 1.6 × 10−9 C, and m = 9.1 × 1031 kg. The cyclotron frequency is therefore

Ωc =
q

m
B0 = 1.76 × 1011B0 s−1
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9.5. A rectangular loop of wire in free space joins points A(1, 0, 1) to B(3, 0, 1) to C(3, 0, 4) to D(1, 0, 4)
to A. The wire carries a current of 6 mA, flowing in the az direction from B to C. A filamentary
current of 15 A flows along the entire z axis in the az direction.
a) Find F on side BC:

FBC =
∫ C

B

IloopdL × Bfrom wire at BC

Thus

FBC =
∫ 4

1

(6 × 10−3) dz az ×
15µ0

2π(3)
ay = −1.8 × 10−8ax N = −18ax nN

b) Find F on side AB: The field from the long wire now varies with position along the loop
segment. We include that dependence and write

FAB =
∫ 3

1

(6 × 10−3) dxax × 15µ0

2πx
ay =

45 × 10−3

π
µ0 ln 3 az = 19.8az nN

c) Find Ftotal on the loop: This will be the vector sum of the forces on the four sides. Note that
by symmetry, the forces on sides AB and CD will be equal and opposite, and so will cancel.
This leaves the sum of forces on sides BC (part a) and DA, where

FDA =
∫ 4

1

−(6 × 10−3) dz az ×
15µ0

2π(1)
ay = 54ax nN

The total force is then Ftotal = FDA + FBC = (54 − 18)ax = 36ax nN

9.6 The magnetic flux density in a region of free space is given by B = −3xax + 5yay − 2zaz T. Find
the total force on the rectangular loop shown in Fig. 9.15 if it lies in the plane z = 0 and is
bounded by x = 1, x = 3, y = 2, and y = 5, all dimensions in cm: First, note that in the plane
z = 0, the z component of the given field is zero, so will not contribute to the force. We use

F =
∫

loop

IdL × B

which in our case becomes, with I = 30 A:

F =
∫ .03

.01

30dxax × (−3xax + 5y|y=.02 ay) +
∫ .05

.02

30dyay × (−3x|x=.03 ax + 5yay)

+
∫ .01

.03

30dxax × (−3xax + 5y|y=.05 ay) +
∫ .02

.05

30dyay × (−3x|x=.01 ax + 5yay)
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9.6. (continued) Simplifying, this becomes

F =
∫ .03

.01

30(5)(.02)az dx +
∫ .05

.02

−30(3)(.03)(−az) dy

+
∫ .01

.03

30(5)(.05)az dx +
∫ .02

.05

−30(3)(.01)(−az) dy = (.060 + .081 − .150 − .027)az N

= −36az mN

9.7. Uniform current sheets are located in free space as follows: 8az A/m at y = 0, −4az A/m at y = 1,
and −4az A/m at y = −1. Find the vector force per meter length exerted on a current filament
carrying 7 mA in the aL direction if the filament is located at:
a) x = 0, y = 0.5, and aL = az: We first note that within the region −1 < y < 1, the magnetic

fields from the two outer sheets (carrying −4az A/m) cancel, leaving only the field from the
center sheet. Therefore, H = −4ax A/m (0 < y < 1) and H = 4ax A/m (−1 < y < 0).
Outside (y > 1 and y < −1) the fields from all three sheets cancel, leaving H = 0 (y > 1,
y < −1). So at x = 0, y = .5, the force per meter length will be

F/m = Iaz × B = (7 × 10−3)az ×−4µ0ax = −35.2ay nN/m

b.) y = 0.5, z = 0, and aL = ax: F/m = Iax ×−4µ0ax = 0.

c) x = 0, y = 1.5, aL = az: Since y = 1.5, we are in the region in which B = 0, and so the force
is zero.

9.8. Filamentary currents of −25az and 25az A are located in the x = 0 plane in free space at y = −1
and y = 1m respectively. A third filamentary current of 10−3az A is located at x = k, y = 0. Find
the vector force on a 1-m length of the 1-mA filament and plot |F| versus k: The total B field
arising from the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian
components:

B =
25µ0

2π(1 + k2)
(kay + ax)︸ ︷︷ ︸

line at y=+1

+
25µ0

2π(1 + k2)
(−kay + ax)︸ ︷︷ ︸

line at y=−1

=
25µ0ax

π(1 + k2)

The force on the 1m length of 1-mA line is now

F = 10−3(1)az ×
25µ0ax

π(1 + k2)
=

(2.5 × 10−2)(4 × 10−7)
(1 + k2)

ay =
10−8ay

(1 + k2)
ay N =

10ay

(1 + k2)
nN
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9.9. A current of −100az A/m flows on the conducting cylinder ρ = 5 mm and +500az A/m is present
on the conducting cylinder ρ = 1 mm. Find the magnitude of the total force acting to split the
outer cylinder apart along its length: The differential force acting on the outer cylinder arising
from the field of the inner cylinder is dF = Kouter×B, where B is the field from the inner cylinder,
evaluated at the outer cylinder location:

B =
2π(1)(500)µ0

2π(5)
aφ = 100µ0 aφ T

Thus dF = −100az ×100µ0aφ = 104µ0aρ N/m2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of
the cylinder. We choose the “upper” half (0 < φ < π), and integrate the y component of dF over
this range, and over a unit length in the z direction:

Fy =
∫ 1

0

∫ π

0

104µ0aρ · ay(5 × 10−3) dφ dz =
∫ π

0

50µ0 sin φ dφ = 100µ0 = 4π × 10−5 N/m

Note that we did not include the “self force” arising from the outer cylinder’s B field on itself.
Since the outer cylinder is a two-dimensional current sheet, its field exists only just outside the
cylinder, and so no force exists. If this cylinder possessed a finite thickness, then we would need
to include its self-force, since there would be an interior field and a volume current density that
would spatially overlap.

9.10. A planar transmission line consists of two conducting planes of width b separated d m in air,
carrying equal and opposite currents of I A. If b >> d, find the force of repulsion per meter of
length between the two conductors.

Take the current in the top plate in the positive z direction, and so the bottom plate current
is directed along negative z. Furthermore, the bottom plate is at y = 0, and the top plate is
at y = d. The magnetic field stength at the bottom plate arising from the current in the top
plate is H = K/2ax A/m, where the top plate surface current density is K = I/baz A/m.
Now the force per unit length on the bottom plate is

F =
∫ 1

0

∫ b

0

Kb × Bb dS

where Kb is the surface current density on the bottom plate, and Bb is the magnetic flux
density arising from the top plate current, evaluated at the bottom plate location. We obtain

F =
∫ 1

0

∫ b

0

−I

b
az ×

µ0I

2b
ax dS = −µ0I

2

2b
ay N/m

9.11. a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two
filamentary conductors in free space with currents I1az at x = 0, y = d/2, and I2az at x = 0,
y = −d/2, is µ0I1I2/(2πd): The force on I2 is given by

F2 = µ0
I1I2

4π

∮ [∮
aR12 × dL1

R2
12

]
× dL2
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9.11a. (continued). Let z1 indicate the z coordinate along I1, and z2 indicate the z coordinate along I2.
We then have R12 =

√
(z2 − z1)2 + d2 and

aR12 =
(z2 − z1)az − day√

(z2 − z1)2 + d2

Also, dL1 = dz1az and dL2 = dz2az The “inside” integral becomes:∮
aR12 × dL1

R2
12

=
∮

[(z2 − z1)az − day] × dz1az

[(z2 − z1)2 + d2]1.5
=

∫ ∞

−∞

−d dz1 ax

[(z2 − z1)2 + d2]1.5

The force expression now becomes

F2 = µ0
I1I2

4π

∮ [∫ ∞

−∞

−d dz1 ax

[(z2 − z1)2 + d2]1.5
× dz2az

]
= µ0

I1I2

4π

∫ 1

0

∫ ∞

−∞

d dz1 dz2 ay

[(z2 − z1)2 + d2]1.5

Note that the “outside” integral is taken over a unit length of current I2. Evaluating, obtain,

F2 = µ0
I1I2day

4πd2
(2)

∫ 1

0

dz2 =
µ0I1I2

2πd
ay N/m

as expected.

b) Show how a simpler method can be used to check your result: We use dF2 = I2dL2 × B12,
where the field from current 1 at the location of current 2 is

B12 =
µ0I1

2πd
ax T

so over a unit length of I2, we obtain

F2 = I2az ×
µ0I1

2πd
ax = µ0

I1I2

2πd
ay N/m

This second method is really just the first over again, since we recognize the inside integral of
the first method as the Biot-Savart law, used to find the field from current 1 at the current 2
location.

9.12. A conducting current strip carrying K = 12az A/m lies in the x = 0 plane between y = 0.5 and
y = 1.5 m. There is also a current filament of I = 5 A in the az direction on the z axis. Find the
force exerted on the:
a) filament by the current strip: We first need to find the field from the current strip at the

filament location. Consider the strip as made up of many adjacent strips of width dy, each
carrying current dIaz = Kdy. The field along the z axis from each differential strip will
be dB = [(Kdyµ0)/(2πy)]ax. The total B field from the strip evaluated along the z axis is
therefore

B =
∫ 1.5

0.5

12µ0ax

2πy
dy =

6µ0

π
ln

(
1.5
0.5

)
ax = 2.64 × 10−6ax Wb/m2

Now

F =
∫ 1

0

IdL × B =
∫ 1

0

5dz az × 2.64 × 10−6 ax dz = 13.2ay µN/m

b) strip by the filament: In this case we integrate K×B over a unit length in z of the strip area,
where B is the field from the filament evaluated on the strip surface:

F =
∫

Area

K × B da =
∫ 1

0

∫ 1.5

0.5

12az ×
−5µ0ax

2πy
dy =

−30µ0

π
ln(3)ay = −13.2ay µN/m
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9.13. A current of 6A flows from M(2, 0, 5) to N(5, 0, 5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the az direction. Compute the
vector torque on the wire segment using:
a) an origin at (0, 0, 5): The B field from the long wire at the short wire is B = (µ0Izay)/(2πx) T.

Then the force acting on a differential length of the wire segment is

dF = IwdL × B = Iwdxax × µ0Iz

2πx
ay =

µ0IwIz

2πx
dxaz N

Now the differential torque about (0, 0, 5) will be

dT = RT × dF = xax × µ0IwIz

2πx
dxaz = −µ0IwIz

2π
dxay

The net torque is now found by integrating the differential torque over the length of the wire
segment:

T =
∫ 5

2

−µ0IwIz

2π
dxay = −3µ0(6)(50)

2π
ay = −1.8 × 10−4 ay N · m

b) an origin at (0, 0, 0): Here, the only modification is in RT , which is now RT = xax + 5az So
now

dT = RT × dF = [xax + 5az] ×
µ0IwIz

2πx
dxaz = −µ0IwIz

2π
dxay

Everything from here is the same as in part a, so again, T = −1.8 × 10−4 ay N · m.

c) an origin at (3, 0, 0): In this case, RT = (x − 3)ax + 5az, and the differential torque is

dT = [(x − 3)ax + 5az] ×
µ0IwIz

2πx
dxaz = −µ0IwIz(x − 3)

2πx
dxay

Thus

T =
∫ 5

2

−µ0IwIz(x − 3)
2πx

dxay = −6.0 × 10−5

[
3 − 3 ln

(
5
2

)]
ay = −1.5 × 10−5 ay N · m

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K1 = 400ay A/m at z = 2, and K2 = 300az A/m at y = 0 in free space. Find the vector torque
on the loop, referred to an origin:
a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative x-directed.

They will add together to give, in the loop plane:

B = −µ0

(
K1

2
+

K2

2

)
ax = −µ0(200 + 150)ax = −350µ0 ax Wb/m2

With this field, forces will be acting only on the wire segments that are parallel to the y axis.
The force on the segment nearer to the y axis will be

F1 = IL × B = −30(3 × 10−2)ay ×−350µ0ax = −315µ0 az N

8



9.14a (continued) The force acting on the segment farther from the y axis will be

F2 = IL × B = 30(3 × 10−2)ay ×−350µ0ax = 315µ0 az N

The torque about the origin is now T = R1×F1+R2×F2, where R1 is the vector directed from the
origin to the midpoint of the nearer y-directed segment, and R2 is the vector joining the origin to
the midpoint of the farther y-directed segment. So R1(cm) = ax+3.5ay and R2(cm) = 3ax+3.5ay.
Therefore

T0,0,0 = [(ax + 3.5ay) × 10−2] ×−315µ0 az + [(3ax + 3.5ay) × 10−2] × 315µ0 az

= −6.30µ0ay = −7.92 × 10−6 ay N−m

b) at the center of the loop: Use T = IS × B where S = (2 × 3) × 10−4 az m2. So

T = 30(6 × 10−4az) × (−350µ0 ax) = −7.92 × 10−6 ay N−m

9.15. A solid conducting filament extends from x = −b to x = b along the line y = 2, z = 0. This
filament carries a current of 3 A in the ax direction. An infinite filament on the z axis carries 5
A in the az direction. Obtain an expression for the torque exerted on the finite conductor about
an origin located at (0, 2, 0): The differential force on the wire segment arising from the field from
the infinite wire is

dF = 3 dxax × 5µ0

2πρ
aφ = −15µ0 cos φ dx

2π
√

x2 + 4
az = − 15µ0x dx

2π(x2 + 4)
az

So now the differential torque about the (0, 2, 0) origin is

dT = RT × dF = xax ×− 15µ0x dx

2π(x2 + 4)
az =

15µ0x
2 dx

2π(x2 + 4)
ay

The torque is then

T =
∫ b

−b

15µ0x
2 dx

2π(x2 + 4)
ay =

15µ0

2π
ay

[
x − 2 tan−1

(x

2

)]b

−b

= (6 × 10−6)
[
b − 2 tan−1

(
b

2

)]
ay N · m

9.16. Assume that an electron is describing a circular orbit of radius a about a positively-charged nucleus.
a) By selecting an appropriate current and area, show that the equivalent orbital dipole moment

is ea2ω/2, where ω is the electron’s angular velocity: The current magnitude will be I = e
T ,

where e is the electron charge and T is the orbital period. The latter is T = 2π/ω, and so
I = eω/(2π). Now the dipole moment magnitude will be m = IA, where A is the loop area.
Thus

m =
eω

2π
πa2 =

1
2
ea2ω //

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea2ωB/2:
With B assumed constant over the loop area, we would have T = m×B. With B parallel to
the loop plane, m and B are orthogonal, and so T = mB. So, using part a, T = ea2ωB/2.

9



9.16. (continued)
c) by equating the Coulomb and centrifugal forces, show that ω is (4πε0mea

3/e2)−1/2, where me

is the electron mass: The force balance is written as

e2

4πε0a2
= meω2a ⇒ ω =

(
4πε0mea

3

e2

)−1/2

//

d) Find values for the angular velocity, torque, and the orbital magnetic moment for a hydrogen
atom, where a is about 6 × 10−11 m; let B = 0.5 T: First

ω =
[

(1.60 × 10−19)2

4π(8.85 × 10−12)(9.1 × 10−31)(6 × 10−11)3

]1/2

= 3.42 × 1016 rad/s

T =
1
2
(3.42 × 1016)(1.60 × 10−19)(0.5)(6 × 10−11)2 = 4.93 × 10−24 N · m

Finally,

m =
T

B
= 9.86 × 10−24 A · m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by eB/(2me) and a decrease in the orbital moment by e2a2B/(4me). What are these
decreases for the hydrogen atom in parts per million for an external magnetic flux density of 0.5
T? We first write down all forces on the electron, in which we equate its coulomb force toward the
nucleus to the sum of the centrifugal force and the force associated with the applied B field. With
the field applied in the same direction as that of the atom, this would yield a Lorentz force that is
radially outward – in the same direction as the centrifugal force.

Fe = Fcent + FB ⇒ e2

4πε0a2
= meω

2a + eωaB︸ ︷︷ ︸
QvB

With B = 0, we solve for ω to find:

ω = ω0 =

√
e2

4πε0mea3

Then with B present, we find

ω2 =
e2

4πε0mea3
− eωB

me
= ω2

0 − eωB

me

Therefore

ω = ω0

√
1 − eωB

ω2
0me

.= ω0

(
1 − eωB

2ω2
0me

)

But ω
.= ω0, and so

ω
.= ω0

(
1 − eB

2ω0me

)
= ω0 −

eB

2me
//
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9.17. (continued) As for the magnetic moment, we have

m = IS =
eω

2π
πa2 =

1
2
ωea2 .=

1
2
ea2

(
ω0 −

eB

2me

)
=

1
2
ω0ea

2 − 1
4

e2a2B

me
//

Finally, for a = 6 × 10−11 m, B = 0.5 T, we have

∆ω

ω
=

eB

2me

1
ω

.=
eB

2me

1
ω0

=
1.60 × 10−19 × 0.5

2 × 9.1 × 10−31 × 3.4 × 1016
= 1.3 × 10−6

where ω0 = 3.4 × 1016 sec−1 is found from Problem 16. Finally,

∆m

m
=

e2a2B

4me
× 2

ωea2

.=
eB

2meω0
= 1.3 × 10−6

9.18. Calculate the vector torque on the square loop shown in Fig. 9.16 about an origin at A in the field
B, given:
a) A(0, 0, 0) and B = 100ay mT: The field is uniform and so does not produce any translation

of the loop. Therefore, we may use T = IS × B about any origin, where I = 0.6 A and
S = 16az m2. We find T = 0.6(16)az × 0.100ay = −0.96ax N−m.

b) A(0, 0, 0) and B = 200ax + 100ay mT: Using the same reasoning as in part a, we find

T = 0.6(16)az × (0.200ax + 0.100ay) = −0.96ax + 1.92ay N−m

c) A(1, 2, 3) and B = 200ax + 100ay − 300az mT: We observe two things here: 1) The field is
again uniform and so again the torque is independent of the origin chosen, and 2) The field
differs from that of part b only by the addition of a z component. With S in the z direction,
this new component of B will produce no torque, so the answer is the same as part b, or
T = −0.96ax + 1.92ay N−m.

d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT for x ≥ 2 and B = 0 elsewhere: Now, force is
acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential
wire segment at location (2,y) is dT = R(y) × dF, where

dF = IdL × B = 0.6 dy ay × [0.2ax + 0.1ay − 0.3az] = [−0.18ax − 0.12az] dy

and R(y) = (2, y, 0) − (1, 2, 3) = ax + (y − 2)ay − 3az. We thus find

dT = R(y) × dF = [ax + (y − 2)ay − 3az] × [−0.18ax − 0.12az] dy

= [−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az] dy

The net torque is now

T =
∫ 2

−2

[−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az] dy = 0.96ax + 2.64ay − 1.44az N−m
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9.19. Given a material for which χm = 3.1 and within which B = 0.4yaz T, find:
a) H: We use B = µ0(1 + χm)H, or

H =
0.4yay

(1 + 3.1)µ0
= 77.6yaz kA/m

b) µ = (1 + 3.1)µ0 = 5.15 × 10−6 H/m.

c) µr = (1 + 3.1) = 4.1.

d) M = χmH = (3.1)(77.6yay) = 241yaz kA/m

e) J = ∇× H = (dHz)/(dy)ax = 77.6ax kA/m2.

f) Jb = ∇× M = (dMz)/(dy)ax = 241ax kA/m2.

g) JT = ∇× B/µ0 = 318ax kA/m2.

9.20. Find H in a material where:
a) µr = 4.2, there are 2.7×1029 atoms/m3, and each atom has a dipole moment of 2.6×10−30 ay

A · m2. Since all dipoles are identical, we may write M = Nm = (2.7×1029)(2.6×10−30ay) =
0.70ay A/m. Then

H =
M

µr − 1
=

0.70ay

4.2 − 1
= 0.22ay A/m

b) M = 270az A/m and µ = 2 µH/m: Have µr = µ/µ0 = (2 × 10−6)/(4π × 10−7) = 1.59. Then
H = 270az/(1.59 − 1) = 456az A/m.

c) χm = 0.7 and B = 2az T: Use

H =
B

µ0(1 + χm)
=

2az

(4π × 10−7)(1.7)
= 936az kA/m

d) Find M in a material where bound surface current densities of 12az A/m and −9az A/m
exist at ρ = 0.3 m and ρ = 0.4 m, respectively: We use

∮
M · dL = Ib, where, since currents

are in the z direction and are symmetric about the z axis, we chose the path integrals to be
circular loops centered on and normal to z. From the symmetry, M will be φ-directed and
will vary only with radius. Note first that for ρ < 0.3 m, no bound current will be enclosed
by a path integral, so we conclude that M = 0 for ρ < 0.3m. At radii between the currents
the path integral will enclose only the inner current so,∮

M · dL = 2πρMφ = 2π(0.3)12 ⇒ M =
3.6
ρ

aφ A/m (0.3 < ρ < 0.4m)

Finally, for ρ > 0.4 m, the total enclosed bound current is Ib,tot = 2π(0.3)(12)−2π(0.4)(9) = 0,
so therefore M = 0 (ρ > 0.4m).

9.21. Find the magnitude of the magnetization in a material for which:
a) the magnetic flux density is 0.02 Wb/m2 and the magnetic susceptibility is 0.003 (note that

this latter quantity is missing in the original problem statement): From B = µ0(H + M) and
from M = χmH, we write

M =
B

µ0

(
1

χm
+ 1

)−1

=
B

µ0(334)
=

0.02
(4π × 10−7)(334)

= 47.7 A/m
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9.21b) the magnetic field intensity is 1200 A/m and the relative permeability is 1.005: From B = µ0(H+
M) = µ0µrH, we write

M = (µr − 1)H = (.005)(1200) = 6.0 A/m

c) there are 7.2× 1028 atoms per cubic meter, each having a dipole moment of 4× 10−30 A · m2

in the same direction, and the magnetic susceptibility is 0.0003: With all dipoles identical the
dipole moment density becomes

M = n m = (7.2 × 1028)(4 × 10−30) = 0.288 A/m

9.22. Under some conditions, it is possible to approximate the effects of ferromagnetic materials by
assuming linearity in the relationship of B and H. Let µr = 1000 for a certain material of which
a cylindrical wire of radius 1mm is made. If I = 1 A and the current distribution is uniform, find
a) B: We apply Ampere’s circuital law to a circular path of radius ρ around the wire axis, and

where ρ < a:

2πρH =
πρ2

πa2
I ⇒ H =

Iρ

2πa2
⇒ B =

1000µ0Iρ

2πa2
aφ =

(103)4π × 10−7(1)ρ
2π × 10−6

aφ

= 200ρaφ Wb/m2

b) H: Using part a, H = B/µrµ0 = ρ/(2π) × 106 aφ A/m.

c) M:

M = B/µ0 − H =
(2000 − 2)ρ

4π
× 106 aφ = 1.59 × 108ρaφ A/m

d) J:

J = ∇× H =
1
ρ

d(ρHφ)
dρ

az = 3.18 × 105 az A/m

e) Jb within the wire:

Jb = ∇× M =
1
ρ

d(ρMφ)
dρ

az = 3.18 × 108 az A/m2

9.23. Calculate values for Hφ, Bφ, and Mφ at ρ = c for a coaxial cable with a = 2.5 mm and b = 6 mm
if it carries current I = 12 A in the center conductor, and µ = 3 µH/m for 2.5 < ρ < 3.5 mm,
µ = 5 µH/m for 3.5 < ρ < 4.5 mm, and µ = 10 µH/m for 4.5 < ρ < 6 mm. Compute for:
a) c = 3 mm: Have

Hφ =
I

2πρ
=

12
2π(3 × 10−3)

= 637 A/m

Then Bφ = µHφ = (3 × 10−6)(637) = 1.91 × 10−3 Wb/m2.

Finally, Mφ = (1/µ0)Bφ − Hφ = 884 A/m.
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9.23b. c = 4 mm: Have
Hφ =

I

2πρ
=

12
2π(4 × 10−3)

= 478 A/m

Then Bφ = µHφ = (5 × 10−6)(478) = 2.39 × 10−3 Wb/m2.

Finally, Mφ = (1/µ0)Bφ − Hφ = 1.42 × 103 A/m.

c) c = 5 mm: Have

Hφ =
I

2πρ
=

12
2π(5 × 10−3)

= 382 A/m

Then Bφ = µHφ = (10 × 10−6)(382) = 3.82 × 10−3 Wb/m2.
Finally, Mφ = (1/µ0)Bφ − Hφ = 2.66 × 103 A/m.

9.24. A coaxial transmission line has a = 5 mm and b = 20 mm. Let its center lie on the z axis and let a
dc current I flow in the az direction in the center conductor. The volume between the conductors
contains a magnetic material for which µr = 2.5, as well as air. Find H, B, and M everywhere
between conductors if Hφ = 600/π A/m at ρ = 10 mm, φ = π/2, and the magnetic material is
located where:
a) a < ρ < 3a; First, we know that Hφ = I/2πρ, from which we construct:

I

2π(10−2)
=

600
π

⇒ I = 12 A

Since the interface between the two media lies in the aφ direction, we use the boundary
condition of continuity of tangential H and write

H(5 < ρ < 20) =
12
2πρ

aφ =
6
πρ

aφ A/m

In the magnetic material, we find

B(5 < ρ < 15) = µH =
(2.5)(4π × 10−7)(12)

2πρ
aφ = (6/ρ)aφ µT

Then, in the free space region, B(15 < ρ < 20) = µ0H = (2.4/ρ)aφ µT.

b) 0 < φ < π; Again, we are given H = 600/π aφ A/m at ρ = 10 and at φ = π/2. Now, since
the interface between media lies in the aρ direction, and noting that magnetic field will be
normal to this (aφ directed), we use the boundary condition of continuity of B normal to an
interface, and write B(0 < φ < π) = B1 = B(π < φ < 2π) = B2, or 2.5µ0H1 = µ0H2. Now,
using Ampere’s circuital law, we write∮

H · dL = πρH1 + πρH2 = 3.5πρH1 = I

Using the given value for H1 at ρ = 10 mm, I = 3.5(600/π)(π × 10−2) = 21 A. Therefore,
H1 = 21/(3.5πρ) = 6/(πρ), or H(0 < φ < π) = 6/(πρ)aφ A/m. Then H2 = 2.5H1, or
H(π < φ < 2π) = 15/(πρ)aφ A/m. Now B(0 < φ < 2π) = 2.5µ0(6/(πρ))aφ = 6/ρaφ µT.
Now, in general, M = (µr −1)H, and so M(0 < φ < π) = (2.5−1)6/(πρ)aφ = 9/(πρ)aφ A/m
and M(π < φ < 2π) = 0.
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9.25. A conducting filament at z = 0 carries 12 A in the az direction. Let µr = 1 for ρ < 1 cm, µr = 6
for 1 < ρ < 2 cm, and µr = 1 for ρ > 2 cm. Find
a) H everywhere: This result will depend on the current and not the materials, and is:

H =
I

2πρ
aφ =

1.91
ρ

A/m (0 < ρ < ∞)

b) B everywhere: We use B = µrµ0H to find:

B(ρ < 1 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T
B(1 < ρ < 2 cm) = (6)µ0(1.91/ρ) = (1.4 × 10−5/ρ)aφ T
B(ρ > 2 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T where ρ is in meters.

9.26. Two current sheets, K0ay A/m at z = 0, and −K0ay A/m at z = d are separated by two slabs of
magnetic material, µr1 for 0 < z < a, and µr2 for a < z < d. If µr2 = 3µr1, find the ratio, a/d,
such that ten percent of the total magnetic flux is in the region 0 < z < a.

The magnetic flux densities in the two regions are B1 = µr1µ0K0 ax Wb/m2 and B2 =
µr2µ0K0 ax Wb/m2. The total flux per unit length of line is then

Φm = a(1)B1 + (d − a)(1)B2 = aµr1µ0K0︸ ︷︷ ︸
Φ1

+ (d − a)µr2µ0K0︸ ︷︷ ︸
Φ2

= µ0K0µr1[a + 3(d − a)]

The ratio of the two fluxes is then found, and set equal to 0.1:

Φ1

Φ2
=

a

3(d − a)
= 0.1 ⇒ a

d
= 0.23

9.27. Let µr1 = 2 in region 1, defined by 2x+3y−4z > 1, while µr2 = 5 in region 2 where 2x+3y−4z < 1.
In region 1, H1 = 50ax − 30ay + 20az A/m. Find:
a) HN1 (normal component of H1 at the boundary): We first need a unit vector normal to the

surface, found through

aN =
∇ (2x + 3y − 4z)
|∇ (2x + 3y − 4z)| =

2ax + 3ay − 4az√
29

= .37ax + .56ay − .74az

Since this vector is found through the gradient, it will point in the direction of increasing
values of 2x + 3y − 4z, and so will be directed into region 1. Thus we write aN = aN21. The
normal component of H1 will now be:

HN1 = (H1 · aN21)aN21

= [(50ax − 30ay + 20az) · (.37ax + .56ay − .74az)] (.37ax + .56ay − .74az)
= −4.83ax − 7.24ay + 9.66az A/m

b) HT1 (tangential component of H1 at the boundary):

HT1 = H1 − HN1

= (50ax − 30ay + 20az) − (−4.83ax − 7.24ay + 9.66az)
= 54.83ax − 22.76ay + 10.34az A/m
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9.27c. HT2 (tangential component of H2 at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

HT2 = HT1 = 54.83ax − 22.76ay + 10.34az A/m

d) HN2 (normal component of H2 at the boundary): Since normal components of B are contin-
uous across a boundary between media of different permeabilities, we write µ1HN1 = µ2HN2

or

HN2 =
µr1

µR2
HN1 =

2
5
(−4.83ax − 7.24ay + 9.66az) = −1.93ax − 2.90ay + 3.86az A/m

e) θ1, the angle between H1 and aN21: This will be

cos θ1 =
H1

|H1|
· aN21 =

[
50ax − 30ay + 20az

(502 + 302 + 202)1/2

]
· (.37ax + .56ay − .74az) = −0.21

Therefore θ1 = cos−1(−.21) = 102◦.

f) θ2, the angle between H2 and aN21: First,

H2 = HT2 + HN2 = (54.83ax − 22.76ay + 10.34az) + (−1.93ax − 2.90ay + 3.86az)
= 52.90ax − 25.66ay + 14.20az A/m

Now

cos θ2 =
H2

|H2|
· aN21 =

[
52.90ax − 25.66ay + 14.20az

60.49

]
· (.37ax + .56ay − .74az) = −0.09

Therefore θ2 = cos−1(−.09) = 95◦.

9.28. For values of B below the knee on the magnetization curve for silicon steel, approximate the curve
by a straight line with µ = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm2 and lengths
of 10 cm in each outer leg, and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil
of 1200 turns carrying 12 mA is placed around the central leg. Find B in the:
a) center leg: We use mmf = ΦR, where, in the central leg,

Rc =
Lin

µAin
=

3 × 10−2

(5 × 10−3)(2.5 × 10−4)
= 2.4 × 104 H

In each outer leg, the reluctance is

Ro =
Lout

µAout
=

10 × 10−2

(5 × 10−3)(1.6 × 10−4)
= 1.25 × 105 H

The magnetic circuit is formed by the center leg in series with the parallel combination of the
two outer legs. The total reluctance seen at the coil location is RT = Rc+(1/2)Ro = 8.65×104

H. We now have
Φ =

mmf

RT
=

14.4
8.65 × 104

= 1.66 × 10−4 Wb
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9.28a. (continued) The flux density in the center leg is now

B =
Φ
A

=
1.66 × 10−4

2.5 × 10−4
= 0.666 T

b) center leg, if a 0.3-mm air gap is present in the center leg: The air gap reluctance adds to the
total reluctance already calculated, where

Rair =
0.3 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 9.55 × 105 H

Now the total reluctance is Rnet = RT + Rair = 8.56 × 104 + 9.55 × 105 = 1.04 × 106. The
flux in the center leg is now

Φ =
14.4

1.04 × 106
= 1.38 × 10−5 Wb

and

B =
1.38 × 10−5

2.5 × 10−4
= 55.3 mT

9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using this value of B and the magnetization curve for silicon
steel, what current is required in the 1200-turn coil? With B = 0.666 T, we read Hin

.= 120 A · t/m
in Fig. 9.11. The flux in the center leg is Φ = 0.666(2.5 × 10−4) = 1.66 × 10−4 Wb. This divides
equally in the two outer legs, so that the flux density in each outer leg is

Bout =
(

1
2

)
1.66 × 10−4

1.6 × 10−4
= 0.52 Wb/m2

Using Fig. 9.11 with this result, we find Hout
.= 90 A · t/m We now use∮

H · dL = NI

to find

I =
1
N

(HinLin + HoutLout) =
(120)(3 × 10−2) + (90)(10 × 10−2)

1200
= 10.5 mA

9.30. A toroidal core has a circular cross section of 4 cm2 area. The mean radius of the toroid is 6 cm.
The core is composed of two semi-circular segments, one of silicon steel and the other of a linear
material with µr = 200. There is a 4mm air gap at each of the two joints, and the core is wrapped
by a 4000-turn coil carrying a dc current I1.

a) Find I1 if the flux density in the core is 1.2 T: I will use the reluctance method here. Reluc-
tances of the steel and linear materials are respectively,

Rs =
π(6 × 10−2)

(3.0 × 10−3)(4 × 10−4)
= 1.57 × 105 H−1
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9.30a. (continued)

Rl =
π(6 × 10−2)

(200)(4π × 10−7)(4 × 10−4)
= 1.88 × 106 H−1

where µs is found from Fig. 9.11, using B = 1.2, from which H = 400, and so B/H = 3.0 mH/m.
The reluctance of each gap is now

Rg =
0.4 × 10−3

(4π × 10−7)(4 × 10−4)
= 7.96 × 105 H−1

We now construct

NI1 = ΦR = 1.2(4 × 10−4) [Rs + Rl + 2Rg] = 1.74 × 103

Thus I1 = (1.74 × 103)/4000 = 435 mA.

b) Find the flux density in the core if I1 = 0.3 A: We are not sure what to use for the permittivity
of steel in this case, so we use the iterative approach. Since the current is down from the value
obtained in part a, we can try B = 1.0 T and see what happens. From Fig. 9.11, we find
H = 200 A/m. Then, in the linear material,

Hl =
1.0

200(4π × 10−7)
= 3.98 × 103 A/m

and in each gap,

Hg =
1.0

4π × 10−7
= 7.96 × 105 A/m

Now Ampere’s circuital law around the toroid becomes

NI1 = π(.06)(200 + 3.98 × 103) + 2(7.96 × 105)(4 × 10−4) = 1.42 × 103 A−t

Then I1 = (1.42 × 103)/4000 = .356 A. This is still larger than the given value of .3A, so we
can extrapolate down to find a better value for B:

B = 1.0 − (1.2 − 1.0)
[
.356 − .300
.435 − .356

]
= 0.86 T

Using this value in the procedure above to evaluate Ampere’s circuital law leads to a value of
I1 of 0.306 A. The result of 0.86 T for B is probably good enough for this problem, considering
the limited resolution of Fig. 9.11.
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9.31. A toroid is constructed of a magnetic material having a cross-sectional area of 2.5 cm2 and an
effective length of 8 cm. There is also a short air gap 0.25 mm length and an effective area of 2.8
cm2. An mmf of 200 A · t is applied to the magnetic circuit. Calculate the total flux in the toroid
if:
a) the magnetic material is assumed to have infinite permeability: In this case the core reluctance,

Rc = l/(µA), is zero, leaving only the gap reluctance. This is

Rg =
d

µ0Ag
=

0.25 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 7.1 × 105 H

Now
Φ =

mmf

Rg
=

200
7.1 × 105

= 2.8 × 10−4 Wb

b) the magnetic material is assumed to be linear with µr = 1000: Now the core reluctance is no
longer zero, but

Rc =
8 × 10−2

(1000)(4π × 10−7)(2.5 × 10−4)
= 2.6 × 105 H

The flux is then
Φ =

mmf

Rc + Rg
=

200
9.7 × 105

= 2.1 × 10−4 Wb

c) the magnetic material is silicon steel: In this case we use the magnetization curve, Fig. 9.11,
and employ an iterative process to arrive at the final answer. We can begin with the value of
Φ found in part a, assuming infinite permeability: Φ(1) = 2.8 × 10−4 Wb. The flux density
in the core is then B

(1)
c = (2.8 × 10−4)/(2.5 × 10−4) = 1.1 Wb/m2. From Fig. 9.11, this

corresponds to magnetic field strength H
(1)
c

.= 270 A/m. We check this by applying Ampere’s
circuital law to the magnetic circuit:∮

H · dL = H(1)
c Lc + H(1)

g d

where H
(1)
c Lc = (270)(8×10−2) = 22, and where H

(1)
g d = Φ(1)Rg = (2.8×10−4)(7.1×105) =

199. But we require that ∮
H · dL = 200 A · t

whereas the actual result in this first calculation is 199 + 22 = 221, which is too high. So, for
a second trial, we reduce B to B

(2)
c = 1 Wb/m2. This yields H

(2)
c = 200 A/m from Fig. 9.11,

and thus Φ(2) = 2.5 × 10−4 Wb. Now∮
H · dL = H(2)

c Lc + Φ(2)Rg = 200(8 × 10−2) + (2.5 × 10−4)(7.1 × 105) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 × 10−4 Wb.
I will leave the answer at that, considering the lack of fine resolution in Fig. 9.11.
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9.32. Determine the total energy stored in a spherical region 1cm in radius, centered at the origin in free
space, in the uniform field:
a) H1 = −600ay A/m: First we find the energy density:

wm1 =
1
2
B1 · H1 =

1
2
µ0H

2
1 =

1
2
(4π × 10−7)(600)2 = 0.226 J/m3

The energy within the sphere is then

Wm1 = wm1

(
4
3
πa3

)
= 0.226

(
4
3
π × 10−6

)
= 0.947 µJ

b) H2 = 600ax + 1200ay A/m: In this case the energy density is

wm2 =
1
2
µ0

[
(600)2 + (1200)2

]
=

5
2
µ0(600)2

or five times the energy density that was found in part a. Therefore, the stored energy in this
field is five times the amount in part a, or Wm2 = 4.74 µJ.

c) H3 = −600ax + 1200ay. This field differs from H2 only by the negative x component, which
is a non-issue since the component is squared when finding the energy density. Therefore, the
stored energy will be the same as that in part b, or Wm3 = 4.74 µJ.

d) H4 = H2 + H3, or 2400ay A/m: The energy density is now wm4 = (1/2)µ0(2400)2 =
(1/2)µ0(16)(600)2 J/m3, which is sixteen times the energy density in part a. The stored
energy is therefore sixteen times that result, or Wm4 = 16(0.947) = 15.2 µJ.

e) 1000ax A/m+0.001ax T: The energy density is wm5 = (1/2)µ0[1000+ .001/µ0]2 = 2.03 J/m3.
Then Wm5 = 2.03[(4/3)π × 10−6] = 8.49 µJ.

9.33. A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm < z < 0.5 cm. The
upper half of the toroid, 0 < z < 0.5 cm, is constructed of a linear material for which µr = 10,
while the lower half, −0.5 cm < z < 0, has µr = 20. An mmf of 150 A · t establishes a flux in the
aφ direction. For z > 0, find:
a) Hφ(ρ): Ampere’s circuital law gives:

2πρHφ = NI = 150 ⇒ Hφ =
150
2πρ

= 23.9/ρ A/m

b) Bφ(ρ): We use Bφ = µrµ0Hφ = (10)(4π × 10−7)(23.9/ρ) = 3.0 × 10−4/ρ Wb/m2.

c) Φz>0: This will be

Φz>0 =
∫ ∫

B · dS =
∫ .005

0

∫ .035

.025

3.0 × 10−4

ρ
dρdz = (.005)(3.0 × 10−4) ln

(
.035
.025

)
= 5.0 × 10−7 Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hφ = 23.9/ρ A/m. Next, Bφ is modified only by the
new permeability, which is twice the value used in part a: Thus Bφ = 6.0 × 10−4/ρ Wb/m2.
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9.33d. (continued) Finally, since Bφ is twice that of part a, the flux will be increased by the same factor,
since the area of integration for z < 0 is the same. Thus Φz<0 = 1.0 × 10−6 Wb.

e) Find Φtotal: This will be the sum of the values found for z < 0 and z > 0, or Φtotal =
1.5 × 10−6 Wb.

9.34. Determine the energy stored per unit length in the internal magnetic field of an infinitely-long
straight wire of radius a, carrying uniform current I.

We begin with H = Iρ/(2πa2)aφ, and find the integral of the energy density over the unit
length in z:

We =
∫

vol

1
2
µ0H

2 dv =
∫ 1

0

∫ 2π

0

∫ a

0

µ0ρ
2I2

8π2a4
ρ dρ dφ dz =

µ0I
2

16π
J/m

9.35. The cones θ = 21◦ and θ = 159◦ are conducting surfaces and carry total currents of 40 A, as shown
in Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.
a) Find H in the region 0 < r < 0.25, 21◦ < θ < 159◦, 0 < φ < 2π: We can apply Ampere’s

circuital law and take advantage of symmetry. We expect to see H in the aφ direction and it
would be constant at a given distance from the z axis. We thus perform the line integral of
H over a circle, centered on the z axis, and parallel to the xy plane:

∮
H · dL =

∫ 2π

0

Hφaφ · r sin θaφ dφ = Iencl. = 40 A

Assuming that Hφ is constant over the integration path, we take it outside the integral and
solve:

Hφ =
40

2πr sin θ
⇒ H =

20
πr sin θ

aφ A/m

b) How much energy is stored in this region? This will be

WH =
∫

v

1
2
µ0H

2
φ =

∫ 2π

0

∫ 159◦

21◦

∫ .25

0

200µ0

π2r2 sin2 θ
r2 sin θ dr dθ dφ =

100µ0

π

∫ 159◦

21◦

dθ

sin θ

=
100µ0

π
ln

[
tan(159/2)
tan(21/2)

]
= 1.35 × 10−4 J

9.36. The dimensions of the outer conductor of a coaxial cable are b and c, where c > b. Assuming µ = µ0,
find the magnetic energy stored per unit length in the region b < ρ < c for a uniformly-distributed
total current I flowing in opposite directions in the inner and outer conductors.

We first need to find the magnetic field inside the outer conductor volume. Ampere’s circuital
law is applied to a circular path of radius ρ, where b < ρ < c. This encloses the entire center
conductor current (assumed in the positive z direction), plus that part of the −z-directed
outer conductor current that lies inside ρ. We obtain:

2πρH = I − I

[
ρ2 − b2

c2 − b2

]
= I

[
c2 − ρ2

c2 − b2

]
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9.36. (continued) So that

H =
I

2πρ

[
c2 − ρ2

c2 − b2

]
aφ A/m (b < ρ < c)

The energy within the outer conductor is now

Wm =
∫

vol

1
2
µ0H

2 dv =
∫ 1

0

∫ 2π

0

∫ c

b

µ0I
2

8π2(c2 − b2)2

[
c2

ρ2
− 2c2 + ρ2

]
ρ dρ dφ, dz

=
µ0I

2

4π(1 − b2/c2)2

[
ln(c/b) − (1 − b2/c2) +

1
4
(1 − b4/c4)

]
J

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18.
The inductance is that offered at the origin between the vertices of the cone: From Problem 9.35,
the magnetic flux density is Bφ = 20µ0/(πr sin θ). We integrate this over the crossectional area
defined by 0 < r < 0.25 and 21◦ < θ < 159◦, to find the total flux:

Φ =
∫ 159◦

21◦

∫ 0.25

0

20µ0

πr sin θ
r dr dθ =

5µ0

π
ln

[
tan(159/2)
tan(21/2)

]
=

5µ0

π
(3.37) = 6.74 × 10−6 Wb

Now L = Φ/I = 6.74 × 10−6/40 = 0.17 µH.
Second method: Use the energy computation of Problem 9.35, and write

L =
2WH

I2
=

2(1.35 × 10−4)
(40)2

= 0.17 µH

9.38. A toroidal core has a rectangular cross section defined by the surfaces ρ = 2 cm, ρ = 3 cm, z = 4
cm, and z = 4.5 cm. The core material has a relative permeability of 80. If the core is wound with
a coil containing 8000 turns of wire, find its inductance: First we apply Ampere’s circuital law to
a circular loop of radius ρ in the interior of the toroid, and in the aφ direction.∮

H · dL = 2πρHφ = NI ⇒ Hφ =
NI

2πρ

The flux in the toroid is then the integral over the cross section of B:

Φ =
∫ ∫

B · dL =
∫ .045

.04

∫ .03

.02

µrµ0NI

2πρ
dρ dz = (.005)

µrµ0NI

2π
ln

(
.03
.02

)

The flux linkage is then given by NΦ, and the inductance is

L =
NΦ
I

=
(.005)(80)(4π × 10−7)(8000)2

2π
ln(1.5) = 2.08 H
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9.39. Conducting planes in air at z = 0 and z = d carry surface currents of ±K0ax A/m.
a) Find the energy stored in the magnetic field per unit length (0 < x < 1) in a width w (0 <

y < w): First, assuming current flows in the +ax direction in the sheet at z = d, and in −ax

in the sheet at z = 0, we find that both currents together yield H = K0ay for 0 < z < d and
zero elsewhere. The stored energy within the specified volume will be:

WH =
∫

v

1
2
µ0H

2dv =
∫ d

0

∫ w

0

∫ 1

0

1
2
µ0K

2
0 dx dy dz =

1
2
wdµ0K

2
0 J/m

b) Calculate the inductance per unit length of this transmission line from WH = (1/2)LI2, where
I is the total current in a width w in either conductor: We have I = wK0, and so

L =
2
I2

wd

2
µ0K

2
0 =

2
w2K2

0

dw

2
µ0K

2
0 =

µ0d

w
H/m

c) Calculate the total flux passing through the rectangle 0 < x < 1, 0 < z < d, in the plane
y = 0, and from this result again find the inductance per unit length:

Φ =
∫ d

0

∫ 1

0

µ0Hay · ay dx dz =
∫ d

0

∫ 1

0

µ0K0dx dy = µ0dK0

Then
L =

Φ
I

=
µ0dK0

wK0
=

µ0d

w
H/m

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air
for 0 < φ < π/2 and π < φ < 3π/2, and a non-conducting material having µr = 8 for π/2 < φ < π
and 3π/2 < φ < 2π. Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous
(and constant at constant radius) around a circular loop centered on the z axis. Ampere’s circuital
law can thus be written in this form:∮

H · dL =
B

µ0

(π

2
ρ
)

+
B

µrµ0

(π

2
ρ
)

+
B

µ0

(π

2
ρ
)

+
B

µrµ0

(π

2
ρ
)

=
πρB

µrµ0
(µr + 1) = I

and so
B =

µrµ0I

πρ(1 + µr)
aφ

The flux in the line per meter length in z is now

Φ =
∫ 1

0

∫ .005

.001

µrµ0I

πρ(1 + µr)
dρ dz =

µrµ0I

π(1 + µr)
ln(5)

And the inductance per unit length is:

L =
Φ
I

=
µrµ0

π(1 + µr)
ln(5) =

8(4π × 10−7)
π(9)

ln(5) = 572 nH/m
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9.41. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance
in free space between this coil and an infinite straight filament on the z axis if the four corners of
the coil are located at
a) (0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil lies in the yz plane. If we assume that

the filament current is in the +az direction, then the B field from the filament penetrates the
coil in the −ax direction (normal to the loop plane). The flux through the loop will thus be

Φ =
∫ 1

0

∫ 3

1

−µ0I

2πy
ax · (−ax) dy dz =

µ0I

2π
ln 3

The mutual inductance is then

M =
NΦ
I

=
150µ0

2π
ln 3 = 33 µH

b) (1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the coil lies in the x = 1 plane, and the field from
the filament penetrates in a direction that is not normal to the plane of the coil. We write the
B field from the filament at the coil location as

B =
µ0Iaφ

2π
√

y2 + 1

The flux through the coil is now

Φ =
∫ 1

0

∫ 3

1

µ0Iaφ

2π
√

y2 + 1
· (−ax) dy dz =

∫ 1

0

∫ 3

1

µ0I sin φ

2π
√

y2 + 1
dy dz

=
∫ 1

0

∫ 3

1

µ0Iy

2π(y2 + 1)
dy dz =

µ0I

2π
ln(y2 + 1)

∣∣∣3
1

= (1.6 × 10−7)I

The mutual inductance is then

M =
NΦ
I

= (150)(1.6 × 10−7) = 24 µH

9.42. Find the mutual inductance between two filaments forming circular rings of radii a and ∆a, where
∆a << a. The field should be determined by approximate methods. The rings are coplanar and
concentric.

We use the result of Problem 8.4, which asks for the magnetic field at the origin, arising from
a circular current loop of radius a. That solution is reproduced below: Using the Biot-Savart
law, we have IdL = Iadπ aφ, R = a, and aR = −aρ. The field at the center of the circle is
then

Hcirc =
∫ 2π

0

Iadφaφ × (−aρ)
4πa2

=
∫ 2π

0

Idφaz

4πa
=

I

2a
az A/m

We now approximate that field as constant over a circular area of radius ∆a, and write the
flux linkage (for the single turn) as

Φm
.= π(∆a)2Bouter =

µ0Iπ(∆a)2

2a
⇒ M =

Φm

I
=

µ0π(∆a)2

2a
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9.43. a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire
of radius a carrying a uniformly-distributed current I is µ0/(8π) H/m. We first find the magnetic
field inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

2πρHφ =
πρ2

πa2
I ⇒ Hφ =

Iρ

2πa2
A/m

Now

WH =
∫

v

1
2
µ0H

2
φ dv =

∫ 1

0

∫ 2π

0

∫ a

0

µ0I
2ρ2

8π2a4
ρ dρ dφ dz =

µ0I
2

16π
J/m

Now, with WH = (1/2)LI2, we find Lint = µ0/(8π) as expected.

b) Find the internal inductance if the portion of the conductor for which ρ < c < a is removed: The
hollowed-out conductor still carries current I, so Ampere’s circuital law now reads:

2πρHφ =
π(ρ2 − c2)
π(a2 − c2)

⇒ Hφ =
I

2πρ

[
ρ2 − c2

a2 − c2

]
A/m

and the energy is now

WH =
∫ 1

0

∫ 2π

0

∫ a

c

µ0I
2(ρ2 − c2)2

8π2ρ2(a2 − c2)2
ρ dρ dφ dz =

µ0I
2

4π(a2 − c2)2

∫ a

c

[
ρ3 − 2c2ρ +

C4

ρ

]
dρ

=
µ0I

2

4π(a2 − c2)2

[
1
4
(a4 − c4) − c2(a2 − c2) + c4 ln

(a

c

)]
J/m

The internal inductance is then

Lint =
2WH

I2
=

µ0

8π

[
a4 − 4a2c2 + 3c4 + 4c4 ln(a/c)

(a2 − c2)2

]
H/m
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CHAPTER 10

10.1. In Fig. 10.4, let B = 0.2 cos 120πt T, and assume that the conductor joining the two ends

of the resistor is perfect. It may be assumed that the magnetic field produced by I(t) is

negligible. Find:

a) Vab(t): Since B is constant over the loop area, the flux is Φ = π(0.15)2B = 1.41 ×
10−2 cos 120πt Wb. Now, emf = Vba(t) = −dΦ/dt = (120π)(1.41 × 10−2) sin 120πt.

Then Vab(t) = −Vba(t) = −5.33 sin 120πt V.

b) I(t) = Vba(t)/R = 5.33 sin(120πt)/250 = 21.3 sin(120πt) mA

10.2. In Fig. 10.1, replace the voltmeter with a resistance, R.

a) Find the current I that flows as a result of the motion of the sliding bar: The current is

found through

I =
1
R

∮
E · dL = − 1

R

dΦm

dt

Taking the normal to the path integral as az, the path direction will be counter-clockwise

when viewed from above (in the −az direction). The minus sign in the equation indicates

that the current will therefore flow clockwise, since the magnetic flux is increasing with

time. The flux of B is Φm = Bdvt, and so

|I| =
1
R

dΦm

dt
=

Bdv

R
(clockwise)

b) The bar current results in a force exerted on the bar as it moves. Determine this force:

F =
∫

IdL × B =
∫ d

0

Idxax × Baz =
∫ d

0

Bdv

R
ax × Baz = −B2d2v

R
ay N

c) Determine the mechanical power required to maintain a constant velocity v and show

that this power is equal to the power absorbed by R. The mechanical power is

Pm = Fv =
(Bdv)2

R
W

The electrical power is

Pe = I2R =
(Bdv)2

R
= Pm



10.3. Given H = 300az cos(3 × 108t − y) A/m in free space, find the emf developed in the general

aφ direction about the closed path having corners at

a) (0,0,0), (1,0,0), (1,1,0), and (0,1,0): The magnetic flux will be:

Φ =
∫ 1

0

∫ 1

0

300µ0 cos(3 × 108t − y) dx dy = 300µ0 sin(3 × 108t − y)|10
= 300µ0

[
sin(3 × 108t − 1) − sin(3 × 108t)

]
Wb

Then

emf = −dΦ
dt

= −300(3 × 108)(4π × 10−7)
[
cos(3 × 108t − 1) − cos(3 × 108t)

]
= −1.13 × 105

[
cos(3 × 108t − 1) − cos(3 × 108t)

]
V

b) corners at (0,0,0), (2π,0,0), (2π,2π,0), (0,2π,0): In this case, the flux is

Φ = 2π × 300µ0 sin(3 × 108t − y)|2π
0 = 0

The emf is therefore 0.

10.4. Conductor surfaces are located at ρ = 1cm and ρ = 2cm in free space. The volume 1 cm <

ρ < 2 cm contains the fields Hφ = (2/ρ) cos(6× 108πt− 2πz) A/m and Eρ = (240π/ρ) cos(6×
108πt − 2πz) V/m.

a) Show that these two fields satisfy Eq. (6), Sec. 10.1: Have

∇× E =
∂Eρ

∂z
aφ =

2π(240π)
ρ

sin(6 × 108πt − 2πz)aφ =
480π2

ρ
sin(6 × 108πt − 2πz)aφ

Then

−∂B
∂t

=
2µ0(6 × 108)π

ρ
sin(6 × 108πt − 2πz)aφ

=
(8π × 10−7)(6 × 108)π

ρ
sin(6 × 108πt − 2πz) =

480π2

ρ
sin(6 × 108πt − 2πz)aφ

b) Evaluate both integrals in Eq. (4) for the planar surface defined by φ = 0, 1cm < ρ < 2cm,

0 < z < 0.1m, and its perimeter, and show that the same results are obtained: we take

the normal to the surface as positive aφ, so the the loop surrounding the surface (by the

right hand rule) is in the negative aρ direction at z = 0, and is in the positive aρ direction

at z = 0.1. Taking the left hand side first, we find∮
E · dL =

∫ .01

.02

240π

ρ
cos(6 × 108πt)aρ · aρ dρ

+
∫ .02

.01

240π

ρ
cos(6 × 108πt − 2π(0.1))aρ · aρ dρ

= 240π cos(6 × 108πt) ln
(

1
2

)
+ 240π cos(6 × 108πt − 0.2π) ln

(
2
1

)
= 240(ln 2)

[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]



10.4b (continued). Now for the right hand side. First,

∫
B · dS =

∫ 0.1

0

∫ .02

.01

8π × 10−7

ρ
cos(6 × 108πt − 2πz)aφ · aφ dρ dz

=
∫ 0.1

0

(8π × 10−7) ln 2 cos(6 × 108πt − 2πz) dz

= −4 × 10−7 ln 2
[
sin(6 × 108πt − 0.2π) − sin(6 × 108πt)

]
Then

− d

dt

∫
B · dS = 240π(ln 2)

[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]
(check)

10.5. The location of the sliding bar in Fig. 10.5 is given by x = 5t + 2t3, and the separation of the

two rails is 20 cm. Let B = 0.8x2az T. Find the voltmeter reading at:

a) t = 0.4 s: The flux through the loop will be

Φ =
∫ 0.2

0

∫ x

0

0.8(x′)2 dx′ dy =
0.16
3

x3 =
0.16
3

(5t + 2t3)3 Wb

Then

emf = −dΦ
dt

=
0.16
3

(3)(5t+2t3)2(5+6t2) = −(0.16)[5(.4)+2(.4)3]2[5+6(.4)2] = −4.32 V

b) x = 0.6 m: Have 0.6 = 5t + 2t3, from which we find t = 0.1193. Thus

emf = −(0.16)[5(.1193) + 2(.1193)3]2[5 + 6(.1193)2] = −.293 V

10.6. A perfectly conducting filament containing a small 500-Ω resistor is formed into a square, as

illustrated in Fig. 10.6. Find I(t) if

a) B = 0.3 cos(120πt − 30◦)az T: First the flux through the loop is evaluated, where the

unit normal to the loop is az. We find

Φ =
∫

loop

B · dS = (0.3)(0.5)2 cos(120πt − 30◦) Wb

Then the current will be

I(t) =
emf
R

= − 1
R

dΦ
dt

=
(120π)(0.3)(0.25)

500
sin(120πt − 30◦) = 57 sin(120πt − 30◦) mA



b) B = 0.4 cos[π(ct− y)]az µT where c = 3× 108 m/s: Since the field varies with y, the flux

is now

Φ =
∫

loop

B · dS = (0.5)(0.4)
∫ .5

0

cos(πy − πct) dy =
0.2
π

[sin(πct − π/2) − sin(πct)] µWb

The current is then

I(t) =
emf
R

= − 1
R

dΦ
dt

=
−0.2c

500
[cos(πct − π/2) − cos(πct)] µA

=
−0.2(3 × 108)

500
[sin(πct) − cos(πct)] µA = 120 [cos(πct) − sin(πct)] mA

10.7. The rails in Fig. 10.7 each have a resistance of 2.2 Ω/m. The bar moves to the right at a

constant speed of 9 m/s in a uniform magnetic field of 0.8 T. Find I(t), 0 < t < 1 s, if the bar

is at x = 2 m at t = 0 and

a) a 0.3 Ω resistor is present across the left end with the right end open-circuited: The flux

in the left-hand closed loop is

Φl = B × area = (0.8)(0.2)(2 + 9t)

Then, emf l = −dΦl/dt = −(0.16)(9) = −1.44 V. With the bar in motion, the loop

resistance is increasing with time, and is given by Rl(t) = 0.3+2[2.2(2+9t)]. The current

is now

Il(t) =
emf l

Rl(t)
=

−1.44
9.1 + 39.6t

A

Note that the sign of the current indicates that it is flowing in the direction opposite that

shown in the figure.

b) Repeat part a, but with a resistor of 0.3 Ω across each end: In this case, there will be

a contribution to the current from the right loop, which is now closed. The flux in the

right loop, whose area decreases with time, is

Φr = (0.8)(0.2)[(16 − 2) − 9t]

and emfr = −dΦr/dt = (0.16)(9) = 1.44 V. The resistance of the right loop is Rr(t) =

0.3 + 2[2.2(14 − 9t)], and so the contribution to the current from the right loop will be

Ir(t) =
−1.44

61.9 − 39.6t
A



10.7b (continued). The minus sign has been inserted because again the current must flow in the

opposite direction as that indicated in the figure, with the flux decreasing with time. The

total current is found by adding the part a result, or

IT (t) = −1.44
[

1
61.9 − 39.6t

+
1

9.1 + 39.6t

]
A

10.8. Fig. 10.1 is modified to show that the rail separation is larger when y is larger. Specifically, let

the separation d = 0.2 + 0.02y. Given a uniform velocity vy = 8 m/s and a uniform magnetic

flux density Bz = 1.1 T, find V12 as a function of time if the bar is located at y = 0 at t = 0:

The flux through the loop as a function of y can be written as

Φ =
∫

B · dS =
∫ y

0

∫ .2+.02y′

0

1.1 dx dy′ =
∫ y

0

1.1(.2 + .02y′) dy′ = 0.22y(1 + .05y)

Now, with y = vt = 8t, the above becomes Φ = 1.76t(1 + .40t). Finally,

V12 = −dΦ
dt

= −1.76(1 + .80t) V

10.9. A square filamentary loop of wire is 25 cm on a side and has a resistance of 125 Ω per meter

length. The loop lies in the z = 0 plane with its corners at (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0),

and (0, 0.25, 0) at t = 0. The loop is moving with velocity vy = 50 m/s in the field Bz =

8 cos(1.5×108t−0.5x) µT. Develop a function of time which expresses the ohmic power being

delivered to the loop: First, since the field does not vary with y, the loop motion in the y

direction does not produce any time-varying flux, and so this motion is immaterial. We can

evaluate the flux at the original loop position to obtain:

Φ(t) =
∫ .25

0

∫ .25

0

8 × 10−6 cos(1.5 × 108t − 0.5x) dx dy

= −(4 × 10−6)
[
sin(1.5 × 108t − 0.13x) − sin(1.5 × 108t)

]
Wb

Now, emf = V (t) = −dΦ/dt = 6.0×102
[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
, The total

loop resistance is R = 125(0.25 + 0.25 + 0.25 + 0.25) = 125 Ω. Then the ohmic power is

P (t) =
V 2(t)

R
= 2.9 × 103

[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
Watts



10.10a. Show that the ratio of the amplitudes of the conduction current density and the displacement

current density is σ/ωε for the applied field E = Em cos ωt. Assume µ = µ0. First, D =

εE = εEm cos ωt. Then the displacement current density is ∂D/∂t = −ωεEm sin ωt. Second,

Jc = σE = σEm cos ωt. Using these results we find |Jc|/|Jd| = σ/ωε.

b. What is the amplitude ratio if the applied field is E = Eme−t/τ , where τ is real? As before,

find D = εE = εEme−t/τ , and so Jd = ∂D/∂t = −(ε/τ)Eme−t/τ . Also, Jc = σEme−t/τ .

Finally, |Jc|/|Jd| = στ/ε.

10.11. Let the internal dimension of a coaxial capacitor be a = 1.2 cm, b = 4 cm, and l = 40 cm.

The homogeneous material inside the capacitor has the parameters ε = 10−11 F/m, µ = 10−5

H/m, and σ = 10−5 S/m. If the electric field intensity is E = (106/ρ) cos(105t)aρ V/m, find:

a) J: Use

J = σE =
(

10
ρ

)
cos(105t)aρ A/m2

b) the total conduction current, Ic, through the capacitor: Have

Ic =
∫ ∫

J · dS = 2πρlJ = 20πl cos(105t) = 8π cos(105t) A

c) the total displacement current, Id, through the capacitor: First find

Jd =
∂D
∂t

=
∂

∂t
(εE) = − (105)(10−11)(106)

ρ
sin(105t)aρ = −1

ρ
sin(105t) A/m

Now

Id = 2πρlJd = −2πl sin(105t) = −0.8π sin(105t) A

d) the ratio of the amplitude of Id to that of Ic, the quality factor of the capacitor: This will

be
|Id|
|Ic|

=
0.8
8

= 0.1



10.12. Show that the displacement current flowing between the two conducting cylinders in a lossless

coaxial capacitor is exactly the same as the conduction current flowing in the external circuit

if the applied voltage between conductors is V0 cos ωt volts.

From Chapter 7, we know that for a given applied voltage between the cylinders, the

electric field is

E =
V0 cos ωt

ρ ln(b/a)
aρ V/m ⇒ D =

εV0 cos ωt

ρ ln(b/a)
aρ C/m2

Then the displacement current density is

∂D
∂t

=
−ωεV0 sin ωt

ρ ln(b/a)
aρ

Over a length 	, the displacement current will be

Id =
∫ ∫

∂D
∂t

· dS = 2πρ	
∂D
∂t

=
2π	ωεV0 sin ωt

ln(b/a)
= C

dV

dt
= Ic

where we recall that the capacitance is given by C = 2πε	/ ln(b/a).

10.13. Consider the region defined by |x|, |y|, and |z| < 1. Let εr = 5, µr = 4, and σ = 0. If

Jd = 20 cos(1.5 × 108t − bx)ay µA/m2;

a) find D and E: Since Jd = ∂D/∂t, we write

D =
∫

Jddt + C =
20 × 10−6

1.5 × 108
sin(1.5 × 108 − bx)ay

= 1.33 × 10−13 sin(1.5 × 108t − bx)ay C/m2

where the integration constant is set to zero (assuming no dc fields are present). Then

E =
D
ε

=
1.33 × 10−13

(5 × 8.85 × 10−12)
sin(1.5 × 108t − bx)ay

= 3.0 × 10−3 sin(1.5 × 108t − bx)ay V/m

b) use the point form of Faraday’s law and an integration with respect to time to find B and

H: In this case,

∇× E =
∂Ey

∂x
az = −b(3.0 × 10−3) cos(1.5 × 108t − bx)az = −∂B

∂t

Solve for B by integrating over time:

B =
b(3.0 × 10−3)

1.5 × 108
sin(1.5 × 108t − bx)az = (2.0)b × 10−11 sin(1.5 × 108t − bx)az T



10.13b (continued). Now

H =
B
µ

=
(2.0)b × 10−11

4 × 4π × 10−7
sin(1.5 × 108t − bx)az

= (4.0 × 10−6)b sin(1.5 × 108t − bx)az A/m

c) use ∇ × H = Jd + J to find Jd: Since σ = 0, there is no conduction current, so in this

case

∇× H = −∂Hz

∂x
ay = 4.0 × 10−6b2 cos(1.5 × 108t − bx)ay A/m2 = Jd

d) What is the numerical value of b? We set the given expression for Jd equal to the result

of part c to obtain:

20 × 10−6 = 4.0 × 10−6b2 ⇒ b =
√

5.0 m−1

10.14. A voltage source, V0 sinωt, is connected between two concentric conducting spheres, r = a

and r = b, b > a, where the region between them is a material for which ε = εrε0, µ = µ0, and

σ = 0. Find the total displacement current through the dielectric and compare it with the

source current as determined from the capacitance (Sec. 5.10) and circuit analysis methods:

First, solving Laplace’s equation, we find the voltage between spheres (see Eq. 20, Chapter

7):

V (t) =
(1/r) − (1/b)
(1/a) − (1/b)

V0 sinωt

Then

E = −∇V =
V0 sin ωt

r2(1/a − 1/b)
ar ⇒ D =

εrε0V0 sin ωt

r2(1/a − 1/b)
ar

Now

Jd =
∂D
∂t

=
εrε0ωV0 cos ωt

r2(1/a − 1/b)
ar

The displacement current is then

Id = 4πr2Jd =
4πεrε0ωV0 cos ωt

(1/a − 1/b)
= C

dV

dt

where, from Eq. 47, Chapter 5,

C =
4πεrε0

(1/a − 1/b)

The results are consistent.



10.15. Let µ = 3×10−5 H/m, ε = 1.2×10−10 F/m, and σ = 0 everywhere. If H = 2 cos(1010t−βx)az

A/m, use Maxwell’s equations to obtain expressions for B, D, E, and β: First, B = µH =

6 × 10−5 cos(1010t − βx)az T. Next we use

∇× H = −∂H
∂x

ay = 2β sin(1010t − βx)ay =
∂D
∂t

from which

D =
∫

2β sin(1010t − βx) dt + C = − 2β

1010
cos(1010t − βx)ay C/m2

where the integration constant is set to zero, since no dc fields are presumed to exist. Next,

E =
D
ε

= − 2β

(1.2 × 10−10)(1010)
cos(1010t − βx)ay = −1.67β cos(1010t − βx)ay V/m

Now

∇× E =
∂Ey

∂x
az = 1.67β2 sin(1010t − βx)az = −∂B

∂t

So

B = −
∫

1.67β2 sin(1010t − βx)azdt = (1.67 × 10−10)β2 cos(1010t − βx)az

We require this result to be consistent with the expression for B originally found. So

(1.67 × 10−10)β2 = 6 × 10−5 ⇒ β = ±600 rad/m

10.16. Derive the continuity equation from Maxwell’s equations: First, take the divergence of both

sides of Ampere’s circuital law:

∇ · ∇ × H︸ ︷︷ ︸
0

= ∇ · J +
∂

∂t
∇ · D = ∇ · J +

∂ρv

∂t
= 0

where we have used ∇ · D = ρv, another Maxwell equation.

10.17. The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z < 0.06 m in free

space is given by E = C sin(12y) sin(az) cos(2 × 1010t)ax V/m. Beginning with the ∇ × E

relationship, use Maxwell’s equations to find a numerical value for a, if it is known that a is

greater than zero: In this case we find

∇× E =
∂Ex

∂z
ay − ∂Ez

∂y
az

= C [a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az] cos(2 × 1010t) = −∂B
∂t



10.17 (continued). Then

H = − 1
µ0

∫
∇× E dt + C1

= − C

µ0(2 × 1010
[a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az] sin(2 × 1010t) A/m

where the integration constant, C1 = 0, since there are no initial conditions. Using this result,

we now find

∇× H =
[
∂Hz

∂y
− ∂Hy

∂z

]
ax = −C(144 + a2)

µ0(2 × 1010)
sin(12y) sin(az) sin(2 × 1010t)ax =

∂D
∂t

Now

E =
D
ε0

=
∫

1
ε0
∇× H dt + C2 =

C(144 + a2)
µ0ε0(2 × 1010)2

sin(12y) sin(az) cos(2 × 1010t)ax

where C2 = 0. This field must be the same as the original field as stated, and so we require

that
C(144 + a2)

µ0ε0(2 × 1010)2
= 1

Using µ0ε0 = (3 × 108)−2, we find

a =
[
(2 × 1010)2

(3 × 108)2
− 144

]1/2

= 66 m−1

10.18. The parallel plate transmission line shown in Fig. 10.8 has dimensions b = 4 cm and d = 8

mm, while the medium between plates is characterized by µr = 1, εr = 20, and σ = 0. Neglect

fields outside the dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s

equations to help find:

a) β, if β > 0: Take

∇× H = −∂Hy

∂z
ax = −5β sin(109t − βz)ax = 20ε0

∂E
∂t

So

E =
∫ −5β

20ε0
sin(109t − βz)ax dt =

β

(4 × 109)ε0
cos(109t − βz)ax

Then

∇× E =
∂Ex

∂z
ay =

β2

(4 × 109)ε0
sin(109t − βz)ay = −µ0

∂H
∂t

So that

H =
∫ −β2

(4 × 109)µ0ε0
sin(109t − βz)ax dt =

β2

(4 × 1018)µ0ε0
cos(109t − βz)

= 5 cos(109t − βz)ay



10.18a (continued) where the last equality is required to maintain consistency. Therefore

β2

(4 × 1018)µ0ε0
= 5 ⇒ β = 14.9 m−1

b) the displacement current density at z = 0: Since σ = 0, we have

∇× H = Jd = −5β sin(109t − βz) = −74.5 sin(109t − 14.9z)ax

= −74.5 sin(109t)ax A/m at z = 0

c) the total displacement current crossing the surface x = 0.5d, 0 < y < b, and 0 < z < 0.1

m in the ax direction. We evaluate the flux integral of Jd over the given cross section:

Id = −74.5b

∫ 0.1

0

sin(109t − 14.9z)ax · ax dz = 0.20
[
cos(109t − 1.49) − cos(109t)

]
A

10.19. In the first section of this chapter, Faraday’s law was used to show that the field E =

− 1
2kB0ρektaφ results from the changing magnetic field B = B0e

ktaz.

a) Show that these fields do not satisfy Maxwell’s other curl equation: Note that B as stated

is constant with position, and so will have zero curl. The electric field, however, varies

with time, and so ∇×H = ∂D
∂t would have a zero left-hand side and a non-zero right-hand

side. The equation is thus not valid with these fields.

b) If we let B0 = 1 T and k = 106 s−1, we are establishing a fairly large magnetic flux

density in 1 µs. Use the ∇× H equation to show that the rate at which Bz should (but

does not) change with ρ is only about 5 × 10−6 T/m in free space at t = 0: Assuming

that B varies with ρ, we write

∇× H = −∂Hz

∂ρ
aφ = − 1

µ0

dB0

dρ
ekt = ε0

∂E
∂t

= −1
2
ε0k

2B0ρekt

Thus
dB0

dρ
=

1
2
µ0ε0k

2ρB0 =
1012(1)ρ

2(3 × 108)2
= 5.6 × 10−6ρ

which is near the stated value if ρ is on the order of 1m.



10.20. Point C(−0.1,−0.2, 0.3) lies on the surface of a perfect conductor. The electric field intensity

at C is (500ax − 300ay + 600az) cos 107t V/m, and the medium surrounding the conductor is

characterized by µr = 5, εr = 10, and σ = 0.

a) Find a unit vector normal to the conductor surface at C, if the origin lies within the

conductor: At t = 0, the field must be directed out of the surface, and will be normal to

it, since we have a perfect conductor. Therefore

n =
+E(t = 0)
|E(t = 0)| =

5ax − 3ay + 6az√
25 + 9 + 36

= 0.60ax − 0.36ay + 0.72az

b) Find the surface charge density at C: Use

ρs = D · n|surface = 10ε0 [500ax − 300ay + 600az] cos(107t) · [.60ax − .36ay + .72az]

= 10ε0 [300 + 108 + 432] cos(107t) = 7.4 × 10−8 cos(107t) C/m2

= 74 cos(107t) nC/m2

10.21. a) Show that under static field conditions, Eq. (55) reduces to Ampere’s circuital law. First

use the definition of the vector Laplacian:

∇2A = −∇×∇× A + ∇(∇ · A) = −µJ

which is Eq. (55) with the time derivative set to zero. We also note that ∇ ·A = 0 in steady

state (from Eq. (54)). Now, since B = ∇× A, (55) becomes

−∇× B = −µJ ⇒ ∇× H = J

b) Show that Eq. (51) becomes Faraday’s law when taking the curl: Doing this gives

∇× E = −∇×∇V − ∂

∂t
∇× A

The curl of the gradient is identially zero, and ∇× A = B. We are left with

∇× E = −∂B/∂t



10.22. In a sourceless medium, in which J = 0 and ρv = 0, assume a rectangular coordinate system in

which E and H are functions only of z and t. The medium has permittivity ε and permeability

µ. (a) If E = Exax and H = Hyay, begin with Maxwell’s equations and determine the second

order partial differential equation that Ex must satisfy.

First use

∇× E = −∂B
∂t

⇒ ∂Ex

∂z
ay = −µ

∂Hy

∂t
ay

in which case, the curl has dictated the direction that H must lie in. Similarly, use the

other Maxwell curl equation to find

∇× H =
∂D
∂t

⇒ −∂Hy

∂z
ax = ε

∂Ex

∂t
ax

Now, differentiate the first equation with respect to z, and the second equation with

respect to t:
∂2Ex

∂z2
= −µ

∂2Hy

∂t∂z
and

∂2Hy

∂z∂t
= −ε

∂2Ex

∂t2

Combining these two, we find
∂2Ex

∂z2
= µε

∂2Ex

∂t2

b) Show that Ex = E0 cos(ωt− βz) is a solution of that equation for a particular value of β:

Substituting, we find

∂2Ex

∂z2
= −β2E0 cos(ωt − βz) and µε

∂2Ex

∂t2
= −ω2µεE0 cos(ωt − βz)

These two will be equal provided the constant multipliers of cos(ωt − βz) are equal.

c) Find β as a function of given parameters. Equating the two constants in part b, we find

β = ω
√

µε.

10.23. In region 1, z < 0, ε1 = 2 × 10−11 F/m, µ1 = 2 × 10−6 H/m, and σ1 = 4 × 10−3 S/m; in

region 2, z > 0, ε2 = ε1/2, µ2 = 2µ1, and σ2 = σ1/4. It is known that E1 = (30ax + 20ay +

10az) cos(109t) V/m at P1(0, 0, 0−).

a) Find EN1, Et1, DN1, and Dt1: These will be

EN1 = 10 cos(109t)az V/m Et1 = (30ax + 20ay) cos(109t) V/m

DN1 = ε1EN1 = (2 × 10−11)(10) cos(109t)az C/m2 = 200 cos(109t)az pC/m2



10.23a (continued).

Dt1 = ε1Et1 = (2 × 10−11)(30ax + 20ay) cos(109t) = (600ax + 400ay) cos(109t) pC/m2

b) Find JN1 and Jt1 at P1:

JN1 = σ1EN1 = (4 × 10−3)(10 cos(109t))az = 40 cos(109t)az mA/m2

Jt1 = σ1Et1 = (4 × 10−3)(30ax + 20ay) cos(109t) = (120ax + 80ay) cos(109t) mA/m2

c) Find Et2, Dt2, and Jt2 at P1: By continuity of tangential E,

Et2 = Et1 = (30ax + 20ay) cos(109t) V/m

Then

Dt2 = ε2Et2 = (10−11)(30ax + 20ay) cos(109t) = (300ax + 200ay) cos(109t) pC/m2

Jt2 = σ2Et2 = (10−3)(30ax + 20ay) cos(109t) = (30ax + 20ay) cos(109t) mA/m2

d) (Harder) Use the continuity equation to help show that JN1 − JN2 = ∂DN2/∂t − ∂DN1/∂t

and then determine EN2, DN2, and JN2: We assume the existence of a surface charge layer

at the boundary having density ρs C/m2. If we draw a cylindrical “pillbox” whose top and

bottom surfaces (each of area ∆a) are on either side of the interface, we may use the continuity

condition to write

(JN2 − JN1)∆a = −∂ρs

∂t
∆a

where ρs = DN2 − DN1. Therefore,

JN1 − JN2 =
∂

∂t
(DN2 − DN1)

In terms of the normal electric field components, this becomes

σ1EN1 − σ2EN2 =
∂

∂t
(ε2EN2 − ε1EN1)

Now let EN2 = A cos(109t) + B sin(109t), while from before, EN1 = 10 cos(109t).



10.23d (continued)

These, along with the permittivities and conductivities, are substituted to obtain

(4 × 10−3)(10) cos(109t) − 10−3[A cos(109t) + B sin(109t)]

=
∂

∂t

[
10−11[A cos(109t) + B sin(109t)] − (2 × 10−11)(10) cos(109t)

]
= −(10−2A sin(109t) + 10−2B cos(109t) + (2 × 10−1) sin(109t)

We now equate coefficients of the sin and cos terms to obtain two equations:

4 × 10−2 − 10−3A = 10−2B

−10−3B = −10−2A + 2 × 10−1

These are solved together to find A = 20.2 and B = 2.0. Thus

EN2 =
[
20.2 cos(109t) + 2.0 sin(109t)

]
az = 20.3 cos(109t + 5.6◦)az V/m

Then

DN2 = ε2EN2 = 203 cos(109t + 5.6◦)az pC/m2

and

JN2 = σ2EN2 = 20.3 cos(109t + 5.6◦)az mA/m2

10.24. In a medium in which ρv = 0, but in which the permittivity is a function of position, determine

the conditions on the permittivity variation such that

a) ∇ · E = 0: We first note that ∇ · D = 0 if ρv = 0, where D = εE. Now

∇ · D = ∇ · (εE) = E · ∇ε + ε∇ · E = 0

or

∇ · E + E · ∇ε

ε
= 0

We see that ∇ · E = 0 if ∇ε = 0.

b) ∇ · E .= 0: From the development in part a, ∇ · E will be approximately zero if ∇ε/ε is

negligible.



10.25. In a region where µr = εr = 1 and σ = 0, the retarded potentials are given by V = x(z − ct)

V and A = x[(z/c) − t]az Wb/m, where c = 1/
√

µ0ε0.

a) Show that ∇ · A = −µε(∂V/∂t):

First,

∇ · A =
∂Az

∂z
=

x

c
= x

√
µ0ε0

Second,
∂V

∂t
= −cx = − x√

µ0ε0

so we observe that ∇·A = −µ0ε0(∂V/∂t) in free space, implying that the given statement

would hold true in general media.

b) Find B, H, E, and D:

Use

B = ∇× A = −∂Ax

∂x
ay =

(
t − z

c

)
ay T

Then

H =
B
µ0

=
1
µ0

(
t − z

c

)
ay A/m

Now,

E = −∇V − ∂A
∂t

= −(z − ct)ax − xaz + xaz = (ct − z)ax V/m

Then

D = ε0E = ε0(ct − z)ax C/m2

c) Show that these results satisfy Maxwell’s equations if J and ρv are zero:

i. ∇ · D = ∇ · ε0(ct − z)ax = 0

ii. ∇ · B = ∇ · (t − z/c)ay = 0

iii.

∇× H = −∂Hy

∂z
ax =

1
µ0c

ax =
√

ε0
µ0

ax

which we require to equal ∂D/∂t:

∂D
∂t

= ε0cax =
√

ε0
µ0

ax



10.25c (continued).

iv.

∇× E =
∂Ex

∂z
ay = −ay

which we require to equal −∂B/∂t:

∂B
∂t

= ay

So all four Maxwell equations are satisfied.

10.26. Let the current I = 80t A be present in the az direction on the z axis in free space within the

interval −0.1 < z < 0.1 m.

a) Find Az at P (0, 2, 0): The integral for the retarded vector potential will in this case assume

the form

A =
∫ .1

−.1

µ080(t − R/c)
4πR

az dz

where R =
√

z2 + 4 and c = 3 × 108 m/s. We obtain

Az =
80µ0

4π

[∫ .1

−.1

t√
z2 + 4

dz −
∫ .1

−.1

1
c

dz

]
= 8 × 10−6t ln(z +

√
z2 + 4)

∣∣∣.1
−.1

− 8 × 10−6

3 × 108
z
∣∣∣.1
−.1

= 8 × 10−6 ln

(
.1 +

√
4.01

−.1 +
√

4.01

)
− 0.53 × 10−14 = 8.0 × 10−7t − 0.53 × 10−14

So finally, A =
[
8.0 × 10−7t − 5.3 × 10−15

]
az Wb/m.

b) Sketch Az versus t over the time interval −0.1 < t < 0.1 µs: The sketch is linearly increasing

with time, beginning with Az = −8.53 × 10−14 Wb/m at t = −0.1 µs, crossing the time axis

and going positive at t = 6.6 ns, and reaching a maximum value of 7.46 × 10−14 Wb/m at

t = 0.1 µs.





CHAPTER 11

11.1. The parameters of a certain transmission line operating at 6 × 108 rad/s are L = 0.4 µH/m,
C = 40 pF/m, G = 80 µS/m, and R = 20 Ω/m.
a) Find γ, α, β, λ, and Z0: We use

γ =
√

ZY =
√

(R + jωL)(G + jωC)

=
√

[20 + j(6 × 108)(0.4 × 10−6)][80 × 10−6 + j(6 × 108)(40 × 10−12)]

= 0.10 + j2.4 m−1 = α + jβ

Therefore, α = 0.10 Np/m, β = 2.4 rad/m, and λ = 2π/β = 2.6 m. Finally,

Z0 =

√
Z

Y
=

√
R + jωL

G + jωC
=

√
20 + j2.4 × 102

80 × 10−6 + j2.4 × 10−2
= 100 − j4.0 Ω

b) If a voltage wave travels 20 m down the line, what percentage of the original amplitude
remains, and by how many degrees is it phase shifted? First,

V20

V0
= e−αL = e−(0.10)(20) = 0.13 or 13 percent

Then the phase shift is given by βL, which in degrees becomes

φ = βL

(
360
2π

)
= (2.4)(20)

(
360
2π

)
= 2.7 × 103 degrees

11.2. A lossless transmission line with Z0 = 60 Ω is being operated at 60 MHz. The velocity on the
line is 3 × 108 m/s. If the line is short-circuited at z = 0, find Zin at:
a) z = −1m: We use the expression for input impedance (Eq. 12), under the conditions

Z2 = 60 and Z3 = 0:

Zin = Z2

[
Z3 cos(βl) + jZ2 sin(βl)
Z2 cos(βl) + jZ3 sin(βl)

]
= j60 tan(βl)

where l = −z, and where the phase constant is β = 2πc/f = 2π(3 × 108)/(6 × 107) =
(2/5)π rad/m. Now, with z = −1 (l = 1), we find Zin = j60 tan(2π/5) = j184.6 Ω.

b) z = −2 m: Zin = j60 tan(4π/5) = −j43.6 Ω

c) z = −2.5 m: Zin = j60 tan(5π/5) = 0

d) z = −1.25 m: Zin = j60 tan(π/2) = j∞ Ω (open circuit)

11.3. The characteristic impedance of a certain lossless transmission line is 72 Ω. If L = 0.5 µH/m,
find:
a) C: Use Z0 =

√
L/C, or

C =
L

Z2
0

=
5 × 10−7

(72)2
= 9.6 × 10−11 F/m = 96 pF/m

1



11.3b) vp:

vp =
1√
LC

=
1√

(5 × 10−7)(9.6 × 10−11)
= 1.44 × 108 m/s

c) β if f = 80 MHz:

β = ω
√

LC =
2π × 80 × 106

1.44 × 108
= 3.5 rad/m

d) The line is terminated with a load of 60 Ω. Find Γ and s:

Γ =
60 − 72
60 + 72

= −0.09 s =
1 + |Γ|
1 − |Γ| =

1 + .09
1 − .09

= 1.2

11.4. A lossless transmission line having Z0 = 120Ω is operating at ω = 5×108 rad/s. If the velocity
on the line is 2.4 × 108 m/s, find:
a) L: With Z0 =

√
L/C and v = 1/

√
LC, we find L = Z0/v = 120/2.4× 108 = 0.50 µH/m.

b) C: Use Z0v =
√

L/C/
√

LC ⇒ C = 1/(Z0v) = [120(2.4 × 108)]−1 = 35 pF/m.

c) Let ZL be represented by an inductance of 0.6 µH in series with a 100-Ω resistance. Find
Γ and s: The inductive impedance is jωL = j(5 × 108)(0.6 × 10−6) = j300. So the load
impedance is ZL = 100 + j300 Ω. Now

Γ =
ZL − Z0

ZL + Z0
=

100 + j300 − 120
100 + j300 + 120

= 0.62 + j0.52 = 0.808 � 40◦

Then

s =
1 + |Γ|
1 − |Γ| =

1 + 0.808
1 − 0.808

= 9.4

11.5. Two characteristics of a certain lossless transmission line are Z0 = 50 Ω and γ = 0+j0.2π m−1

at f = 60 MHz.
a) Find L and C for the line: We have β = 0.2π = ω

√
LC and Z0 = 50 =

√
L/C. Thus

β

Z0
= ωC ⇒ C =

β

ωZ0
=

0.2π

(2π × 60 × 106)(50)
=

1
3
× 1010 = 33.3 pF/m

Then L = CZ2
0 = (33.3 × 10−12)(50)2 = 8.33 × 10−8 H/m = 83.3 nH/m.

b) A load, ZL = 60 + j80 Ω is located at z = 0. What is the shortest distance from the load
to a point at which Zin = Rin + j0? I will do this using two different methods:

The Hard Way: We use the general expression

Zin = Z0

[
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

]

We can then normalize the impedances with respect to Z0 and write

zin =
Zin

Z0
=

[
(ZL/Z0) + j tan(βl)
1 + j(ZL/Z0) tan(βl)

]
=

[
zL + j tan(βl)
1 + jzL tan(βl)

]

where zL = (60 + j80)/50 = 1.2 + j1.6.
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11.5b. (continued) Using this, and defining x = tan(βl), we find

zin =
[

1.2 + j(1.6 + x)
(1 − 1.6x) + j1.2x

] [
(1 − 1.6x) − j1.2x

(1 − 1.6x) − j1.2x

]

The second bracketed term is a factor of one, composed of the complex conjugate of the
denominator of the first term, divided by itself. Carrying out this product, we find

zin =
[
1.2(1 − 1.6x) + 1.2x(1.6 + x) − j[(1.2)2x − (1.6 + x)(1 − 1.6x)]

(1 − 1.6x)2 + (1.2)2x2

]

We require the imaginary part to be zero. Thus

(1.2)2x − (1.6 + x)(1 − 1.6x) = 0 ⇒ 1.6x2 + 3x − 1.6 = 0

So

x = tan(βl) =
−3 ±

√
9 + 4(1.6)2

2(1.6)
= (.433,−2.31)

We take the positive root, and find

βl = tan−1(.433) = 0.409 ⇒ l =
0.409
0.2π

= 0.65 m = 65 cm

The Easy Way: We find

Γ =
60 + j80 − 50
60 + j80 + 50

= 0.405 + j0.432 = 0.59 � 0.818

Thus φ = 0.818 rad, and we use the fact that the input impedance will be purely real at
the location of a voltage minimum or maximum. The first voltage maximum will occur
at a distance in front of the load given by

zmax =
φ

2β
=

0.818
2(0.2π)

= 0.65 m

11.6. The propagation constant of a lossy transmission line is 1 + j2 m−1, and its characteristic
impedance is 20 + j0 Ω at ω = 1 Mrad/s. Find L, C, R, and G for the line: Begin with

Z0 =

√
R + jωL

G + jωL
= 20 ⇒ R + jωL = 400(G + jωC) (1)

Then
γ2 = (R + jωL)(G + jωC) = (1 + j2)2 ⇒ 400(G + jωC)2 = (1 + j2)2 (2)

where (1) has been used. Eq. 2 now becomes G + jωC = (1 + j2)/20. Equating real and
imaginary parts leads to G = .05 S/m and C = 1/(10ω) = 10−7 = 0.1 µF/m.
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11.6. (continued) Now, (1) becomes

20 =

√
R + jωL

1 + j2

√
20 ⇒ 20 =

R + jωL

1 + j2
⇒ 20 + j40 = R + jωL

Again, equating real and imaginary parts leads to R = 20 Ω/m and L = 40/ω = 40µH/m.

11.7. A transmitter and receiver are connected using a cascaded pair of transmission lines. At the
operating frequency, Line 1 has a measured loss of 0.1 dB/m, and Line 2 is rated at 0.2 dB/m.
The link is composed of 40m of Line 1, joined to 25m of Line 2. At the joint, a splice loss of
2 dB is measured. If the transmitted power is 100mW, what is the received power?

The total loss in the link in dB is 40(0.1)+25(0.2)+2 = 11 dB. Then the received power
is Pr = 100mW × 10−0.1(11) = 7.9 mW.

11.8. A measure of absolute power is the dBm scale, in which power is specified in decibels relative
to 1 milliwatt. Specifically, P (dBm) = 10 log10 [P (mW)/1mW]. Suppose a receiver is rated as
having a sensitivity of -5 dBm – indicating the minimum power that it must receive in order
to adequately interpret the transmitted data. Consider a transmitter having an output of 100
mW connected to this receiver through a length of transmission line whose loss is 0.1 dB/m.
What is the maximum length of line that can be used?

First we find the transmitted power in dBm: Pt(dBm) = 10 log10(100/1) = 20 dBm.
From this result, we subtract the maximum dB loss to obtain the receiver sensitivity:

20 dBm − loss (dB) = −5 dBm ⇒ loss (dB) = 0.1Lmax = 25 dB

Therefore, the maximum distance is Lmax = 250 m.

11.9. A sinusoidal voltage source drives the series combination of an impedance, Zg = 50 − j50 Ω,
and a lossless transmission line of length L, shorted at the load end. The line characteristic
impedance is 50 Ω, and wavelength λ is measured on the line.

a) Determine, in terms of wavelength, the shortest line length that will result in the voltage
source driving a total impedance of 50 Ω: Using Eq. (98), with ZL = 0, we find the input
impedance, Zin = jZ0 tan(βL), where Z0 = 50 ohms. This input inpedance is in series
with the generator impedance, giving a total of Ztot = 50 − j50 + j50 tan(βL). For this
impedance to equal 50 ohms, the imaginary parts must cancel. Therefore, tan(βL) = 1,
or βL = π/4, at minimum. So L = π/(4β) = π/(4 × 2π/λ) = λ/8.

b) Will other line lengths meet the requirements of part a? If so what are they? Yes, the
requirement being βL = π/4 + mπ, where m is an integer. Therefore

L =
π/4 + mπ

β
=

π(1 + 4m)
4 × 2π/λ

=
λ

8
+ m

λ

2
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11.10. A 100 MHz voltage source drives the series combination of an impedance, Zg = 25 + j25 Ω
and a lossless transmission line of length λ/4, terminated by a load impedance, ZL. The line
characteristic impedance is 50 Ω.

a) Determine the load impedance value required to achieve a net impedance (seen by the
voltage source) of 50 Ω: From Eq. (98), the input impedance for a quarter-wave line is
Zin = Z2

0/ZL, and the net impedance seen by the voltage source is now

Ztot = 25 + j25 +
(50)2

ZL
= 50 as requested

Solving for ZL, obtain

ZL =
(50)2

25 − j25
= 50 + j50 ohms

b) If the inductance of the line is L = 1 µH/m, determine the line length in meters: We
know that Z0 =

√
L/C = 50, so that C = L/(50)2 = 10−6/2500 = 4.0 × 10−10 F. Next,

the line phase velocity is vp = 1/
√

LC = 1/
√

(10−6)(4.0 × 10−10) = 5.0× 107 m/s. Then
the wavelength in the line is λ = vp/f = 5.0 × 107/108 = 0.5 m. Finally the line length
is L = λ/4 = 0.125 m.

11.11. A transmission line having primary constants L, C, R, and G, has length � and is terminated
by a load having complex impedance RL + jXL. At the input end of the line, a DC voltage
source, V0, is connected. Assuming all parameters are known at zero frequency, find the steady
state power dissipated by the load if

a) R = G = 0: Here, the line just acts as a pair of lossless leads to the impedance. At zero
frequency, the dissipated power is just Pd = V 2

0 /RL.

b) R �= 0, G = 0: In this case, the load is effectively in series with a resistance of value R�.
The voltage at the load is therefore VL = V0RL/(R� + RL), and the dissipated power is
Pd = V 2

L/RL = V 2
0 RL/(R� + RL)2.

c) R = 0, G �= 0: Now, the load is in parallel with a resistance, 1/(G�), but the voltage at
the load is still V0. Dissipated power by the load is Pd = V 2

0 /RL.

d) R �= 0, G �= 0: One way to approach this problem is to think of the power at the load
as arising from an incident voltage wave of vanishingly small frequency, and to assume
that losses in the line are sufficient to allow steady state conditions to be reached after
a single reflection from the load. The “forward-traveling” voltage as a function of z is
given by V (z) = V0 exp (−γz), where γ =

√
(R + jωL)(G + jωC) →

√
RG as frequency

approaches zero. Considering a single reflection only, the voltage at the load is then
VL = (1 + Γ)V0 exp

(
−
√

RG �
)
. The reflection coefficient requires the line characteristic

impedance, given by Z0 = [(R + jωL)/(G + jωC)]1/2 →
√

R/G as ω → 0. The reflection
coefficient is then Γ = (RL −

√
R/G)/(RL +

√
R/G), and so the load voltage becomes:

VL =
2RL

RL +
√

R/G
exp

(
−
√

RG �
)

The dissipated power is then

Pd =
V 2

L

RL
=

4RLV 2
0(

RL +
√

R/G
)2 exp

(
−2

√
RG �

)
W
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11.12. In a circuit in which a sinusoidal voltage source drives its internal impedance in series with a
load impedance, it is known that maximum power transfer to the load occurs when the source
and load impedances form a complex conjugate pair. Suppose the source (with its internal
impedance) now drives a complex load of impedance ZL = RL + jXL that has been moved to
the end of a lossless transmission line of length � having characteristic impedance Z0. If the
source impedance is Zg = Rg + jXg, write an equation that can be solved for the required
line length, �, such that the displaced load will receive the maximum power.

The condition of maximum power transfer will be met if the input impedance to the line
is the conjugate of the internal impedance. Using Eq. (98), we write

Zin = Z0

[
(RL + jXL) cos(β�) + jZ0 sin(β�)
Z0 cos(β�) + j(RL + jXL) sin(β�)

]
= Rg − jXg

This is the equation that we have to solve for � – assuming that such a solution exists.
To find out, we need to work with the equation a little. Multiplying both sides by the
denominator of the left side gives

Z0(RL + jXL) cos(β�) + jZ2
0 sin(β�) = (Rg − jXg)[Z0 cos(β�) + j(RL + jXL) sin(β�)]

We next separate the equation by equating the real parts of both sides and the imaginary
parts of both sides, giving

(RL − Rg) cos(β�) =
XLXg

Z0
sin(β�) (real parts)

and

(XL + Xg) cos(β�) =
RgRL − Z2

0

Z0
sin(β�) (imaginary parts)

Using the two equations, we find two conditions on the tangent of β�:

tan(β�) =
Z0(RL − Rg)

XgXL
=

Z0(XL + Xg)
RgRL − Z2

0

For a viable solution to exist for �, both equalities must be satisfied, thus limiting the
possible choices of the two impedances.

11.13. The incident voltage wave on a certain lossless transmission line for which Z0 = 50 Ω and
vp = 2 × 108 m/s is V +(z, t) = 200 cos(ωt − πz) V.
a) Find ω: We know β = π = ω/vp, so ω = π(2 × 108) = 6.28 × 108 rad/s.
b) Find I+(z, t): Since Z0 is real, we may write

I+(z, t) =
V +(z, t)

Z0
= 4 cos(ωt − πz) A

The section of line for which z > 0 is replaced by a load ZL = 50 + j30 Ω at z = 0. Find
c) ΓL: This will be

ΓL =
50 + j30 − 50
50 + j30 + 50

= .0825 + j0.275 = 0.287 � 1.28 rad
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d) V −
s (z) = ΓLV +

s (z)ej2βz = 0.287(200)ejπzej1.28 = 57.5ej(πz+1.28)

e) Vs at z = −2.2 m:

Vs(−2.2) = V +
s (−2.2) + V −

s (−2.2) = 200ej2.2π + 57.5e−j(2.2π−1.28) = 257.5ej0.63

= 257.5 � 36◦

11.14. A 50-Ω lossless line is terminated with 60- and 30-Ω resistors in parallel. The voltage at the
input to the line is V(t) = 100 cos(5× 109t) and the line is three-eighths of a wavelength long.
What average power is delivered to each load resistor?

First, we need the input impedance. The parallel resistors give a net load impedance of
20 ohms. The line length of 3λ/8 gives β� = (2π/λ)(3λ/8) = (3/4)π. Eq. (98) then
yields:

Zin = 50
[
20 cos(3π/4) + j50 sin(3π/4)
50 cos(3π/4) + j20 sin(3π/4)

]
= 50

[
−20/

√
2 + j50/

√
2

−50/
√

2 + j20/
√

2

]
= 34.5 − j36.2 Ω

Now, the power delivered to the load is the power delivered to the input impedance. This
is

P =
1
2
Re

{ |V |2
Z∗

in

}
=

1
2
Re

{
104

34.5 + j36.2

}
= 69 W

The load resistors, 30 and 60 ohms, will divide the power, with the 30-ohm resistor
dissipating twice the power of the 60-ohm. Therefore, the power divides as 23 W (60Ω)
and 46 W (30Ω).

11.15. For the transmission line represented in Fig. 11.29, find Vs,out if f =:
a) 60 Hz: At this frequency,

β =
ω

vp
=

2π × 60
(2/3)(3 × 108)

= 1.9×10−6 rad/m So βl = (1.9×10−6)(80) = 1.5×10−4 << 1

The line is thus essentially a lumped circuit, where Zin
.= ZL = 80 Ω. Therefore

Vs,out = 120
[

80
12 + 80

]
= 104 V

b) 500 kHz: In this case

β =
2π × 5 × 105

2 × 108
= 1.57 × 10−2 rad/s So βl = 1.57 × 10−2(80) = 1.26 rad

Now

Zin = 50
[
80 cos(1.26) + j50 sin(1.26)
50 cos(1.26) + j80 sin(1.26)

]
= 33.17 − j9.57 = 34.5 � − .28

The equivalent circuit is now the voltage source driving the series combination of Zin and
the 12 ohm resistor. The voltage across Zin is thus

Vin = 120
[

Zin

12 + Zin

]
= 120

[
33.17 − j9.57

12 + 33.17 − j9.57

]
= 89.5 − j6.46 = 89.7 � − .071
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11.15. (continued) The voltage at the line input is now the sum of the forward and backward-
propagating waves just to the right of the input. We reference the load at z = 0, and so the
input is located at z = −80 m. In general we write Vin = V +

0 e−jβz + V −
0 ejβz, where

V −
0 = ΓLV +

0 =
80 − 50
80 + 50

V +
0 =

3
13

V +
0

At z = −80 m we thus have

Vin = V +
0

[
ej1.26 +

3
13

e−j1.26

]
⇒ V +

0 =
89.5 − j6.46

ej1.26 + (3/13)e−j1.26
= 42.7 − j100 V

Now

Vs,out = V +
0 (1 + ΓL) = (42.7 − j100)(1 + 3/(13)) = 134� − 1.17 rad = 52.6 − j123 V

As a check, we can evaluate the average power reaching the load:

Pavg,L =
1
2
|Vs,out|2

RL
=

1
2

(134)2

80
= 112 W

This must be the same power that occurs at the input impedance:

Pavg,in =
1
2
Re {VinI∗in} =

1
2
Re {(89.5 − j6.46)(2.54 + j0.54)} = 112 W

where Iin = Vin/Zin = (89.5 − j6.46)/(33.17 − j9.57) = 2.54 + j0.54.

11.16. A 300 ohm transmission line is 0.8 m long and is terminated with a short circuit. The line is
operating in air with a wavelength of 0.3 m and is lossless.
a) If the input voltage amplitude is 10V, what is the maximum voltage amplitude at any

point on the line? The net voltage anywhere on the line is the sum of the forward and
backward wave voltages, and is written as V (z) = V +

0 e−jβz + V −
0 ejβz. Since the line is

short-circuited at the load end (z = 0), we have V −
0 = −V +

0 , and so

V (z) = V +
0

(
e−jβz − ejβz

)
= −2jV +

0 sin(jβz)

We now evaluate the voltage at the input, where z = −0.8m, and λ = 0.3m.

Vin = −2jV +
0 sin

(
2π(−0.8)

0.3

)
= −j1.73V +

0

The magnitude of Vin is given as 10V, so we find V +
0 = 10/1.73 = 5.78V. The maximum

voltage amplitude on the line will be twice this value (where the sine function is unity),
so |V |max = 2(5.78) = 11.56 V.

b) What is the current amplitude in the short circuit? At the shorted end, the current will
be

IL =
V +

0

Z0
− V −

0

Z0
=

2V +
0

Z0
=

11.56
300

= 0.039A = 39 mA

11.17. Determine the average power absorbed by each resistor in Fig. 11.30: The problem is made
easier by first converting the current source/100 ohm resistor combination to its Thevenin
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equivalent. This is a 50� 0 V voltage source in series with the 100 ohm resistor. The next
step is to determine the input impedance of the 2.6λ length line, terminated by the 25 ohm
resistor: We use βl = (2π/λ)(2.6λ) = 16.33 rad. This value, modulo 2π is (by subtracting 2π
twice) 3.77 rad. Now

Zin = 50
[
25 cos(3.77) + j50 sin(3.77)
50 cos(3.77) + j25 sin(3.77)

]
= 33.7 + j24.0

The equivalent circuit now consists of the series combination of 50 V source, 100 ohm resistor,
and Zin, as calculated above. The current in this circuit will be

I =
50

100 + 33.7 + j24.0
= 0.368 � − .178

The power dissipated by the 25 ohm resistor is the same as the power dissipated by the real
part of Zin, or

P25 = P33.7 =
1
2
|I|2R =

1
2
(.368)2(33.7) = 2.28 W

To find the power dissipated by the 100 ohm resistor, we need to return to the Norton config-
uration, with the original current source in parallel with the 100 ohm resistor, and in parallel
with Zin. The voltage across the 100 ohm resistor will be the same as that across Zin, or
V = IZin = (.368 � − .178)(33.7 + j24.0) = 15.2 � 0.44. The power dissipated by the 100 ohm
resistor is now

P100 =
1
2
|V |2
R

=
1
2

(15.2)2

100
= 1.16 W

11.18 The line shown in Fig. 11.31 is lossless. Find s on both sections 1 and 2: For section 2, we
consider the propagation of one forward and one backward wave, comprising the superposition
of all reflected waves from both ends of the section. The ratio of the backward to the forward
wave amplitude is given by the reflection coefficient at the load, which is

ΓL =
50 − j100 − 50
50 − j100 + 50

=
−j

1 − j
=

1
2
(1 − j)

Then |ΓL| = (1/2)
√

(1 − j)(1 + j) = 1/
√

2. Finally

s2 =
1 + |ΓL|
1 − |ΓL|

=
1 + 1/

√
2

1 − 1/
√

2
= 5.83

For section 1, we need the reflection coefficient at the junction (location of the 100 Ω resistor)
seen by waves incident from section 1: We first need the input impedance of the .2λ length of
section 2:

Zin2 = 50
[
(50 − j100) cos(β2l) + j50 sin(β2l)
50 cos(β2l) + j(50 − j100) sin(β2l)

]
= 50

[
(1 − j2)(0.309) + j0.951
0.309 + j(1 − j2)(0.951)

]
= 8.63 + j3.82 = 9.44 � 0.42 rad

11.18. (continued) Now, this impedance is in parallel with the 100Ω resistor, leading to a net junction
impedance found by

1
ZinT

=
1

100
+

1
8.63 + j3.82

⇒ ZinT = 8.06 + j3.23 = 8.69 � 0.38 rad
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The reflection coefficient will be

Γj =
ZinT − 50
ZinT + 50

= −0.717 + j0.096 = 0.723 � 3.0 rad

and the standing wave ratio is s1 = (1 + 0.723)/(1 − 0.723) = 6.22.

11.19. A lossless transmission line is 50 cm in length and operating at a frequency of 100 MHz. The
line parameters are L = 0.2 µH/m and C = 80 pF/m. The line is terminated by a short
circuit at z = 0, and there is a load, ZL = 50 + j20 ohms across the line at location z = −20
cm. What average power is delivered to ZL if the input voltage is 100� 0 V? With the given
capacitance and inductance, we find

Z0 =

√
L

C
=

√
2 × 10−7

8 × 10−11
= 50 Ω

and
vp =

1√
LC

=
1√

(2 × 10−7)(9 × 10−11)
= 2.5 × 108 m/s

Now β = ω/vp = (2π × 108)/(2.5 × 108) = 2.5 rad/s. We then find the input impedance to
the shorted line section of length 20 cm (putting this impedance at the location of ZL, so
we can combine them): We have βl = (2.5)(0.2) = 0.50, and so, using the input impedance
formula with a zero load impedance, we find Zin1 = j50 tan(0.50) = j27.4 ohms. Now, at
the location of ZL, the net impedance there is the parallel combination of ZL and Zin1:
Znet = (50+ j20)||(j27.4) = 7.93+ j19.9. We now transform this impedance to the line input,
30 cm to the left, obtaining (with βl = (2.5)(.3) = 0.75):

Zin2 = 50
[
(7.93 + j19.9) cos(.75) + j50 sin(.75)
50 cos(.75) + j(7.93 + j19.9) sin(.75)

]
= 35.9 + j98.0 = 104.3 � 1.22

The power delivered to ZL is the same as the power delivered to Zin2: The current magnitude
is |I| = (100)/(104.3) = 0.96 A. So finally,

P =
1
2
|I|2R =

1
2
(0.96)2(35.9) = 16.5 W
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11.20a. Determine s on the transmission line of Fig. 11.32. Note that the dielectric is air: The
reflection coefficient at the load is

ΓL =
40 + j30 − 50
40 + j30 + 50

= j0.333 = 0.333 � 1.57 rad Then s =
1 + .333
1 − .333

= 2.0

b) Find the input impedance: With the length of the line at 2.7λ, we have βl = (2π)(2.7) = 16.96
rad. The input impedance is then

Zin = 50
[
(40 + j30) cos(16.96) + j50 sin(16.96)
50 cos(16.96) + j(40 + j30) sin(16.96)

]
= 50

[−1.236 − j5.682
1.308 − j3.804

]
= 61.8 − j37.5 Ω

c) If ωL = 10 Ω, find Is: The source drives a total impedance given by Znet = 20 + jωL + Zin =
20 + j10 + 61.8 − j37.5 = 81.8 − j27.5. The current is now Is = 100/(81.8 − j27.5) =
1.10 + j0.37 A.

d) What value of L will produce a maximum value for |Is| at ω = 1 Grad/s? To achieve this,
the imaginary part of the total impedance of part c must be reduced to zero (so we need an
inductor). The inductor impedance must be equal to negative the imaginary part of the line
input impedance, or ωL = 37.5, so that L = 37.5/ω = 37.5 nH. Continuing, for this value of
L, calculate the average power:

e) supplied by the source: Ps = (1/2)Re{VsI
∗
s } = (1/2)(100)(1.10) = 55.0 W.

f) delivered to ZL = 40 + j30 Ω: The power delivered to the load will be the same as the power
delivered to the input impedance. We write

PL =
1
2
Re{Zin}|Is|2 =

1
2
(61.8)[(1.10 + j.37)(1.10 − j.37)] = 41.6 W

11.21. A lossless line having an air dielectric has a characteristic impedance of 400 Ω. The line is
operating at 200 MHz and Zin = 200 − j200 Ω. Use analytic methods or the Smith chart (or
both) to find: (a) s; (b) ZL if the line is 1 m long; (c) the distance from the load to the nearest
voltage maximum: I will first use the analytic approach. Using normalized impedances, Eq.
(13) becomes

zin =
Zin

Z0
=

[
zL cos(βL) + j sin(βL)
cos(βL) + jzL sin(βL)

]
=

[
zL + j tan(βL)
1 + jzL tan(βL)

]

Solve for zL:

zL =
[

zin − j tan(βL)
1 − jzin tan(βL)

]

where, with λ = c/f = 3× 108/2× 108 = 1.50 m, we find βL = (2π)(1)/(1.50) = 4.19, and so
tan(βL) = 1.73. Also, zin = (200 − j200)/400 = 0.5 − j0.5. So

zL =
0.5 − j0.5 − j1.73

1 − j(0.5 − j0.5)(1.73)
= 2.61 + j0.174

Finally, ZL = zL(400) = 1.04 × 103 + j69.8 Ω. Next

Γ =
ZL − Z0

ZL + Z0
=

6.42 × 102 + j69.8
1.44 × 103 + j69.8

= .446 + j2.68 × 10−2 = .447 � 6.0 × 10−2 rad
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11.21. (continued) Now

s =
1 + |Γ|
1 − |Γ| =

1 + .447
1 − .447

= 2.62

Finally

zmax = − φ

2β
= −λφ

4π
= − (6.0 × 10−2)(1.50)

4π
= −7.2 × 10−3 m = −7.2 mm

We next solve the problem using the Smith chart. Referring to the figure below, we first
locate and mark the normalized input impedance, zin = 0.5 − j0.5. A line drawn from the
origin through this point intersects the outer chart boundary at the position 0.0881 λ on the
wavelengths toward load (WTL) scale. With a wavelength of 1.5 m, the 1 meter line is 0.6667
wavelengths long. On the WTL scale, we add 0.6667λ, or equivalently, 0.1667λ (since 0.5λ is
once around the chart), obtaining (0.0881 + 0.1667)λ) = 0.2548λ, which is the position of the
load. A straight line is now drawn from the origin though the 0.2548λ position. A compass
is then used to measure the distance between the origin and zin. With this distance set, the
compass is then used to scribe off the same distance from the origin to the load impedance,
along the line between the origin and the 0.2548λ position. That point is the normalized load
impedance, which is read to be zL = 2.6 + j0.18. Thus ZL = zL(400) = 1040 + j72. This is
in reasonable agreement with the analytic result of 1040 + j69.8. The difference in imaginary
parts arises from uncertainty in reading the chart in that region.

In transforming from the input to the load positions, we cross the r > 1 real axis of the chart at
r=2.6. This is close to the value of the VSWR, as we found earlier. We also see that the r > 1
real axis (at which the first Vmax occurs) is a distance of 0.0048λ (marked as .005λ on the chart)
in front of the load. The actual distance is zmax = −0.0048(1.5) m = −0.0072 m = −7.2 mm.

Problem 11.21
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11.22. A lossless two-wire line has a characteristic impedance of 300 Ω and a capacitance of 15 pF/m.
The load at z = 0 consists of a 600-Ω resistor in parallel with a 10-pF capacitor. If ω = 108

rad/s and the line is 20m long, use the Smith chart to find a) |ΓL|; b) s; c) Zin. First, the
wavelength on the line is found using λ = 2πvp/ω, where vp = 1/(CZ0). Assuming higher
accuracy in the given values than originally stated, we obtain

λ =
2π

ωCZ0
=

2π

(108)(15 × 10−12)(300)
= 13.96 m

The line length in wavelengths is therefore 20/13.96 = 1.433λ. The normalized load admittance
is now

yL = YLZ0 = Z0

[
1

RL
+ jωC

]
= 300

[
1

600
+ j(108)(10−11)

]
= 0.50 + j0.30

Problem 11.22

The yL value is plotted on the chart and labeled as yL. Next, yL is inverted to find zL by
transforming the point halfway around the chart, using the compass and a straight edge. The
result, labeled zL on the chart is read to be zL = 1.5 − j0.87. This is close to the computed
inverse of yL, which is 1.47 − j0.88. Scribing the compass arc length along the bottom scale
for reflection coefficient yields |ΓL| = 0.38. The VSWR is found by scribing the compass arc
length either along the bottom SWR scale or along the positive real axis of the chart, both
methods yielding s = 2.2. Now, the position of zL is read on the outer edge of the chart as
0.308λ on the WTG scale. The point is now transformed through the line length distance of
1.433λ toward the generator (the net chart distance will be 0.433λ, since a full wavelength is
two complete revolutions). The final reading on the WTG scale after the transformation is
found through (0.308 + 0.433 − 0.500)λ = 0.241λ. Drawing a line between this mark on the
WTG scale and the chart center, and scribing the compass arc length on this line, yields the
normalized input impedance. This is read as zin = 2.2 + j0.21 (the computed value found
through the analytic solution is zin = 2.21 + j0.219. The input impedance is now found by
multiplying the chart reading by 300, or Zin = 660 + j63 Ω.
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11.23. The normalized load on a lossless transmission line is zL = 2 + j1. Let λ = 20 m Make use of
the Smith chart to find:
a) the shortest distance from the load to the point at which zin = rin + j0, where rin > 1

(not greater than 0 as stated): Referring to the figure below, we start by marking the
given zL on the chart and drawing a line from the origin through this point to the outer
boundary. On the WTG scale, we read the zL location as 0.213λ. Moving from here
toward the generator, we cross the positive ΓR axis (at which the impedance is purely
real and greater than 1) at 0.250λ. The distance is then (0.250 − 0.213)λ = 0.037λ from
the load. With λ = 20 m, the actual distance is 20(0.037) = 0.74 m.

b) Find zin at the point found in part a: Using a compass, we set its radius at the distance
between the origin and zL. We then scribe this distance along the real axis to find
zin = rin = 2.61.

Problem 11.23

c) The line is cut at this point and the portion containing zL is thrown away. A resistor
r = rin of part a is connected across the line. What is s on the remainder of the line?
This will be just s for the line as it was before. As we know, s will be the positive real
axis value of the normalized impedance, or s = 2.61.

d) What is the shortest distance from this resistor to a point at which zin = 2 + j1? This
would return us to the original point, requiring a complete circle around the chart (one-
half wavelength distance). The distance from the resistor will therefore be: d = 0.500 λ−
0.037 λ = 0.463 λ. With λ = 20 m, the actual distance would be 20(0.463) = 9.26 m.
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11.24. With the aid of the Smith chart, plot a curve of |Zin| vs. l for the transmission line shown
in Fig. 11.33. Cover the range 0 < l/λ < 0.25. The required input impedance is that at the
actual line input (to the left of the two 20Ω resistors. The input to the line section occurs just
to the right of the 20Ω resistors, and the input impedance there we first find with the Smith
chart. This impedance is in series with the two 20Ω resistors, so we add 40Ω to the calculated
impedance from the Smith chart to find the net line input impedance. To begin, the 20Ω
load resistor represents a normalized impedance of zl = 0.4, which we mark on the chart (see
below). Then, using a compass, draw a circle beginning at zL and progressing clockwise to
the positive real axis. The circle traces the locus of zin values for line lengths over the range
0 < l < λ/4.

Problem 11.24

On the chart, radial lines are drawn at positions corresponding to .025λ increments on the
WTG scale. The intersections of the lines and the circle give a total of 11 zin values. To these
we add normalized impedance of 40/50 = 0.8 to add the effect of the 40Ω resistors and obtain
the normalized impedance at the line input. The magnitudes of these values are then found,
and the results are multiplied by 50Ω. The table below summarizes the results.

l/λ zinl (to right of 40Ω) zin = zinl + 0.8 |Zin| = 50|zin|
0 0.40 1.20 60

.025 0.41 + j.13 1.21 + j.13 61

.050 0.43 + j.27 1.23 + j.27 63

.075 0.48 + j.41 1.28 + j.41 67

.100 0.56 + j.57 1.36 + j.57 74

.125 0.68 + j.73 1.48 + j.73 83

.150 0.90 + j.90 1.70 + j.90 96

.175 1.20 + j1.05 2.00 + j1.05 113

.200 1.65 + j1.05 2.45 + j1.05 134

.225 2.2 + j.7 3.0 + j.7 154

.250 2.5 3.3 165
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11.24. (continued) As a check, the line input input impedance can be found analytically through

Zin = 40 + 50
[
20 cos(2πl/λ) + j50 sin(2πl/λ)
50 cos(2πl/λ) + j20 sin(2πl/λ)

]
= 50

[
60 cos(2πl/λ) + j66 sin(2πl/λ)
50 cos(2πl/λ) + j20 sin(2πl/λ)

]

from which

|Zin| = 50
[
36 cos2(2πl/λ) + 43.6 sin2(2πl/λ)
25 cos2(2πl/λ) + 4 sin2(2πl/λ)

]1/2

This function is plotted below along with the results obtained from the Smith chart. A fairly
good comparison is obtained.

Problem 11.24
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11.25. A 300-ohm transmission line is short-circuited at z = 0. A voltage maximum, |V |max = 10 V,
is found at z = −25 cm, and the minimum voltage, |V |min = 0, is found at z = −50 cm. Use
the Smith chart to find ZL (with the short circuit replaced by the load) if the voltage readings
are:

a) |V |max = 12 V at z = −5 cm, and vertV |min = 5 V: First, we know that the maximum
and minimum voltages are spaced by λ/4. Since this distance is given as 25 cm, we see
that λ = 100 cm = 1 m. Thus the maximum voltage location is 5/100 = 0.05λ in front
of the load. The standing wave ratio is s = |V |max/|V |min = 12/5 = 2.4. We mark
this on the positive real axis of the chart (see next page). The load position is now 0.05
wavelengths toward the load from the |V |max position, or at 0.30 λ on the WTL scale.
A line is drawn from the origin through this point on the chart, as shown. We next set
the compass to the distance between the origin and the z = r = 2.4 point on the real
axis. We then scribe this same distance along the line drawn through the .30 λ position.
The intersection is the value of zL, which we read as zL = 1.65 + j.97. The actual load
impedance is then ZL = 300zL = 495 + j290 Ω.

b) |V |max = 17 V at z = −20 cm, and |V |min = 0. In this case the standing wave ratio is
infinite, which puts the starting point on the r → ∞ point on the chart. The distance of
20 cm corresponds to 20/100 = 0.20 λ, placing the load position at 0.45 λ on the WTL
scale. A line is drawn from the origin through this location on the chart. An infinite
standing wave ratio places us on the outer boundary of the chart, so we read zL = j0.327
at the 0.45 λ WTL position. Thus ZL = j300(0.327) .= j98 Ω.

Problem 11.25

17



11.26. A lossless 50Ω transmission line operates with a velocity that is 3/4c. A load, ZL = 60+j30 Ω
is located at z = 0. Use the Smith chart to find:
a) s: First we find the normalized load impedance, zL = (60 + j30)/50 = 1.2 + j0.6, which

is then marked on the chart (see below). Drawing a line from the chart center through
this point yields its location at 0.328λ on the WTL scale. The distance from the origin
to the load impedance point is now set on the compass; the standing wave ratio is then
found by scribing this distance along the positive real axis, yielding s = 1.76, as shown.
Alternately, use the s scale at the bottom of the chart, setting the compass point at the
center, and scribing the distance on the scale to the left.

Problem 11.26

b) the distance from the load to the nearest voltage minimum if f = 300 MHz: This distance
is found by transforming the load impedance clockwise around the chart until the negative
real axis is reached. This distance in wavelengths is just the load position on the WTL
scale, since the starting point for this scale is the negative real axis. So the distance is
0.328λ. The wavelength is

λ =
v

f
=

(3/4)c
300MHz

=
3(3 × 108)
4(3 × 108)

= 0.75 m

So the actual distance to the first voltage minimum is dmin = 0.328(0.75) m = 24.6 cm.

c) the input impedance if f = 200 MHz and the input is at z = −110cm: The wavelength
at this frequency is λ = (3/4)(3× 108)/(2× 108) = 1.125 m. The distance to the input in
wavelengths is then din = (1.10)/(1.125) = 0.9778λ. Transforming the load through this
distance toward the generator involves revolution once around the chart (0.500λ) plus the
remainder of 0.4778λ, which leads to a final position of 0.1498λ

.= 0.150λ on the WTG
scale, or 0.350λ on the WTL scale. A line is drawn between this point and the chart center.
Scribing the compass arc length through this line yields the normalized input impedance,
read as zin = 1.03+j0.56. The actual input impedance is Zin = zin×50 = 51.5 + j28.0 Ω.
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11.27. The characteristic admittance (Y0 = 1/Z0) of a lossless transmission line is 20 mS. The line is
terminated in a load YL = 40 − j20 mS. Make use of the Smith chart to find:
a) s: We first find the normalized load admittance, which is yL = YL/Y0 = 2 − j1. This is

plotted on the Smith chart below. We then set on the compass the distance between yL

and the origin. The same distance is then scribed along the positive real axis, and the
value of s is read as 2.6.

b) Yin if l = 0.15 λ: First we draw a line from the origin through zL and note its intersection
with the WTG scale on the chart outer boundary. We note a reading on that scale of
about 0.287 λ. To this we add 0.15 λ, obtaining about 0.437 λ, which we then mark on
the chart (0.287 λ is not the precise value, but I have added 0.15 λ to that mark to obtain
the point shown on the chart that is near to 0.437 λ. This “eyeballing” method increases
the accuracy a little). A line drawn from the 0.437 λ position on the WTG scale to the
origin passes through the input admittance. Using the compass, we scribe the distance
found in part a across this line to find yin = 0.56− j0.35, or Yin = 20yin = 11 − j7.0 mS.

c) the distance in wavelengths from YL to the nearest voltage maximum: On the admittance
chart, the Vmax position is on the negative Γr axis. This is at the zero position on the
WTL scale. The load is at the approximate 0.213 λ point on the WTL scale, so this
distance is the one we want.

Problem 11.27
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11.28. The wavelength on a certain lossless line is 10cm. If the normalized input impedance is
zin = 1 + j2, use the Smith chart to determine:

a) s: We begin by marking zin on the chart (see below), and setting the compass at its
distance from the origin. We then use the compass at that setting to scribe a mark on
the positive real axis, noting the value there of s = 5.8.

b) zL, if the length of the line is 12 cm: First, use a straight edge to draw a line from the origin
through zin, and through the outer scale. We read the input location as slightly more than
0.312λ on the WTL scale (this additional distance beyond the .312 mark is not measured,
but is instead used to add a similar distance when the impedance is transformed). The
line length of 12cm corresponds to 1.2 wavelengths. Thus, to transform to the load, we
go counter-clockwise twice around the chart, plus 0.2λ, finally arriving at (again) slightly
more than 0.012λ on the WTL scale. A line is drawn to the origin from that position,
and the compass (with its previous setting) is scribed through the line. The intersection
is the normalized load impedance, which we read as zL = 0.173 − j0.078.

c) xL, if zL = 2 + jxL, where xL > 0. For this, use the compass at its original setting to
scribe through the r = 2 circle in the upper half plane. At that point we read xL = 2.62.

Problem 11.28
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11.29. A standing wave ratio of 2.5 exists on a lossless 60 Ω line. Probe measurements locate a voltage
minimum on the line whose location is marked by a small scratch on the line. When the load
is replaced by a short circuit, the minima are 25 cm apart, and one minimum is located at
a point 7 cm toward the source from the scratch. Find ZL: We note first that the 25 cm
separation between minima imply a wavelength of twice that, or λ = 50 cm. Suppose that the
scratch locates the first voltage minimum. With the short in place, the first minimum occurs
at the load, and the second at 25 cm in front of the load. The effect of replacing the short
with the load is to move the minimum at 25 cm to a new location 7 cm toward the load, or at
18 cm. This is a possible location for the scratch, which would otherwise occur at multiples of
a half-wavelength farther away from that point, toward the generator. Our assumed scratch
position will be 18 cm or 18/50 = 0.36 wavelengths from the load. Using the Smith chart (see
below) we first draw a line from the origin through the 0.36λ point on the wavelengths toward
load scale. We set the compass to the length corresponding to the s = r = 2.5 point on the
chart, and then scribe this distance through the straight line. We read zL = 0.79 + j0.825,
from which ZL = 47.4 + j49.5 Ω. As a check, I will do the problem analytically. First, we use

zmin = −18 cm = − 1
2β

(φ + π) ⇒ φ =
[
4(18)
50

− 1
]

π = 1.382 rad = 79.2◦

Now
|ΓL| =

s − 1
s + 1

=
2.5 − 1
2.5 + 1

= 0.4286

and so ΓL = 0.4286 � 1.382. Using this, we find

zL =
1 + ΓL

1 − ΓL
= 0.798 + j0.823

and thus ZL = zL(60) = 47.8 + j49.3 Ω.

Problem 11.29
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11.30. A 2-wire line, constructed of lossless wire of circular cross-section is gradually flared into a
coupling loop that looks like an egg beater. At the point X, indicated by the arrow in Fig.
11.34, a short circuit is placed across the line. A probe is moved along the line and indicates
that the first voltage minimum to the left of X is 16cm from X. With the short circuit
removed, a voltage minimum is found 5cm to the left of X, and a voltage maximum is located
that is 3 times voltage of the minimum. Use the Smith chart to determine:

a) f : No Smith chart is needed to find f , since we know that the first voltage minimum in
front of a short circuit is one-half wavelength away. Therefore, λ = 2(16) = 32cm, and
(assuming an air-filled line), f = c/λ = 3 × 108/0.32 = 0.938 GHz.

b) s: Again, no Smith chart is needed, since s is the ratio of the maximum to the minimum
voltage amplitudes. Since we are given that Vmax = 3Vmin, we find s = 3.

c) the normalized input impedance of the egg beater as seen looking the right at point
X: Now we need the chart. From the figure below, s = 3 is marked on the positive
real axis, which determines the compass radius setting. This point is then transformed,
using the compass, to the negative real axis, which corresponds to the location of a voltage
minimum. Since the first Vmin is 5cm in front of X, this corresponds to (5/32)λ = 0.1563λ
to the left of X. On the chart, we now move this distance from the Vmin location toward
the load, using the WTL scale. A line is drawn from the origin through the 0.1563λ mark
on the WTL scale, and the compass is used to scribe the original radius through this line.
The intersection is the normalized input impedance, which is read as zin = 0.86 − j1.06.

Problem 11.30
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11.31. In order to compare the relative sharpness of the maxima and minima of a standing wave,
assume a load zL = 4 + j0 is located at z = 0. Let |V |min = 1 and λ = 1 m. Determine the
width of the
a) minimum, where |V | < 1.1: We begin with the general phasor voltage in the line:

V (z) = V +(e−jβz + Γejβz)

With zL = 4 + j0, we recognize the real part as the standing wave ratio. Since the load
impedance is real, the reflection coefficient is also real, and so we write

Γ = |Γ| =
s − 1
s + 1

=
4 − 1
4 + 1

= 0.6

The voltage magnitude is then

|V (z)| =
√

V (z)V ∗(z) = V +
[
(e−jβz + Γejβz)(ejβz + Γe−jβz)

]1/2

= V +
[
1 + 2Γ cos(2βz) + Γ2

]1/2

Note that with cos(2βz) = ±1, we obtain |V | = V +(1 ± Γ) as expected. With s = 4 and
with |V |min = 1, we find |V |max = 4. Then with Γ = 0.6, it follows that V + = 2.5. The
net expression for |V (z)| is then

V (z) = 2.5
√

1.36 + 1.2 cos(2βz)

To find the width in z of the voltage minimum, defined as |V | < 1.1, we set |V (z)| = 1.1
and solve for z: We find

(
1.1
2.5

)2

= 1.36 + 1.2 cos(2βz) ⇒ 2βz = cos−1(−0.9726)

Thus 2βz = 2.904. At this stage, we note the the |V |min point will occur at 2βz = π. We
therefore compute the range, ∆z, over which |V | < 1.1 through the equation:

2β(∆z) = 2(π − 2.904) ⇒ ∆z =
π − 2.904

2π/1
= 0.0378 m = 3.8 cm

where λ = 1 m has been used.

b) Determine the width of the maximum, where |V | > 4/1.1: We use the same equation for
|V (z)|, which in this case reads:

4/1.1 = 2.5
√

1.36 + 1.2 cos(2βz) ⇒ cos(2βz) = 0.6298

Since the maximum corresponds to 2βz = 0, we find the range through

2β∆z = 2 cos−1(0.6298) ⇒ ∆z =
0.8896
2π/1

= 0.142 m = 14.2 cm
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11.32. A lossless line is operating with Z0 = 40 Ω, f = 20 MHz, and β = 7.5π rad/m. With a short
circuit replacing the load, a minimum is found at a point on the line marked by a small spot
of puce paint. With the load installed, it is found that s = 1.5 and a voltage minimum is
located 1m toward the source from the puce dot.

a) Find ZL: First, the wavelength is given by λ = 2π/β = 2/7.5 = 0.2667m. The 1m distance
is therefore 3.75λ. With the short installed, the Vmin positions will be at multiples of λ/2
to the left of the short. Therefore, with the actual load installed, the Vmin position as
stated would be 3.75λ + nλ/2, which means that a maximum voltage occurs at the load.
This being the case, the normalized load impedance will lie on the positive real axis of the
Smith chart, and will be equal to the standing wave ratio. Therefore, ZL = 40(1.5) = 60 Ω.

b) What load would produce s = 1.5 with |V |max at the paint spot? With |V |max at the
paint spot and with the spot an integer multiple of λ/2 to the left of the load, |V |max

must also occur at the load. The answer is therefore the same as part a, or ZL = 60 Ω.

11.33. In Fig. 11.17, let ZL = 40 − j10 Ω, Z0 = 50 Ω, f = 800 MHz, and v = c.

a) Find the shortest length, d1, of a short-circuited stub, and the shortest distance d that
it may be located from the load to provide a perfect match on the main line to the left
of the stub: The Smith chart construction is shown on the next page. First we find
zL = (40 − j10)/50 = 0.8 − j0.2 and plot it on the chart. Next, we find yL = 1/zL by
transforming this point halfway around the chart, where we read yL = 1.17 + j0.30. This
point is to be transformed to a location at which the real part of the normalized admittance
is unity. The g = 1 circle is highlighted on the chart; yL transforms to two locations on it:
yin1 = 1− j0.32 and yin2 = 1+ j0.32. The stub is connected at either of these two points.
The stub input admittance must cancel the imaginary part of the line admittance at that
point. If yin2 is chosen, the stub must have input admittance of −j0.32. This point is
marked on the outer circle and occurs at 0.452 λ on the WTG scale. The length of the stub
is found by computing the distance between its input, found above, and the short-circuit
position (stub load end), marked as Psc. This distance is d1 = (0.452−0.250)λ = 0.202 λ.
With f = 800 MHz and v = c, the wavelength is λ = (3 × 108)/(8 × 108) = 0.375 m.
The distance is thus d1 = (0.202)(0.375) = 0.758 m = 7.6 cm. This is the shortest of
the two possible stub lengths, since if we had used yin1, we would have needed a stub
input admittance of +j0.32, which would have required a longer stub length to realize.
The length of the main line between its load and the stub attachment point is found on
the chart by measuring the distance between yL and yin2, in moving clockwise (toward
generator). This distance will be d = [0.500 − (0.178 − 0.138)]λ = 0.46 λ. The actual
length is then d = (0.46)(0.375) = 0.173m = 17.3 cm.
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11.33b) Repeat for an open-circuited stub: In this case, everything is the same, except for the load-
end position of the stub, which now occurs at the Poc point on the chart. To use the shortest
possible stub, we need to use yin1 = 1− j0.32, requiring ys = +j0.32. We find the stub length
by moving from Poc to the point at which the admittance is j0.32. This occurs at 0.048 λ on
the WTG scale, which thus determines the required stub length. Now d1 = (0.048)(0.375) =
0.18 m = 1.8 cm. The attachment point is found by transforming yL to yin1, where the
former point is located at 0.178 λ on the WTG scale, and the latter is at 0.362 λ on the
same scale. The distance is then d = (0.362 − 0.178)λ = 0.184λ. The actual length is
d = (0.184)(0.375) = 0.069 m = 6.9 cm.

Problem 11.33
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11.34. The lossless line shown in Fig. 11.35 is operating with λ = 100cm. If d1 = 10cm, d = 25cm,
and the line is matched to the left of the stub, what is ZL? For the line to be matched, it
is required that the sum of the normalized input admittances of the shorted stub and the
main line at the point where the stub is connected be unity. So the input susceptances of the
two lines must cancel. To find the stub input susceptance, use the Smith chart to transform
the short circuit point 0.1λ toward the generator, and read the input value as bs = −1.37
(note that the stub length is one-tenth of a wavelength). The main line input admittance
must now be yin = 1 + j1.37. This line is one-quarter wavelength long, so the normalized
load impedance is equal to the normalized input admittance. Thus zL = 1 + j1.37, so that
ZL = 300zL = 300 + j411 Ω.

Problem 11.34

26



11.35. A load, ZL = 25 + j75 Ω, is located at z = 0 on a lossless two-wire line for which Z0 = 50 Ω
and v = c.
a) If f = 300 MHz, find the shortest distance d (z = −d) at which the input impedance has

a real part equal to 1/Z0 and a negative imaginary part: The Smith chart construction
is shown below. We begin by calculating zL = (25 + j75)/50 = 0.5 + j1.5, which we then
locate on the chart. Next, this point is transformed by rotation halfway around the chart
to find yL = 1/zL = 0.20 − j0.60, which is located at 0.088 λ on the WTL scale. This
point is then transformed toward the generator until it intersects the g = 1 circle (shown
highlighted) with a negative imaginary part. This occurs at point yin = 1.0 − j2.23,
located at 0.308 λ on the WTG scale. The total distance between load and input is then
d = (0.088 + 0.308)λ = 0.396λ. At 300 MHz, and with v = c, the wavelength is λ = 1 m.
Thus the distance is d = 0.396 m = 39.6 cm.

b) What value of capacitance C should be connected across the line at that point to provide
unity standing wave ratio on the remaining portion of the line? To cancel the input
normalized susceptance of -2.23, we need a capacitive normalized susceptance of +2.23.
We therefore write

ωC =
2.23
Z0

⇒ C =
2.23

(50)(2π × 3 × 108)
= 2.4 × 10−11 F = 24 pF

Problem 11.35
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11.36. The two-wire lines shown in Fig. 11.36 are all lossless and have Z0 = 200 Ω. Find d and the
shortest possible value for d1 to provide a matched load if λ = 100cm. In this case, we have
a series combination of the loaded line section and the shorted stub, so we use impedances
and the Smith chart as an impedance diagram. The requirement for matching is that the
total normalized impedance at the junction (consisting of the sum of the input impedances
to the stub and main loaded section) is unity. First, we find zL = 100/200 = 0.5 and mark
this on the chart (see below). We then transform this point toward the generator until we
reach the r = 1 circle. This happens at two possible points, indicated as zin1 = 1 + j.71 and
zin2 = 1 − j.71. The stub input impedance must cancel the imaginary part of the loaded
section input impedance, or zins = ±j.71. The shortest stub length that accomplishes this is
found by transforming the short circuit point on the chart to the point zins = +j0.71, which
yields a stub length of d1 = .098λ = 9.8 cm. The length of the loaded section is then found by
transforming zL = 0.5 to the point zin2 = 1 − j.71, so that zins + zin2 = 1, as required. This
transformation distance is d = 0.347λ = 37.7 cm.

Problem 11.36
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11.37. In the transmission line of Fig. 11.20, RL = Z0 = 50 Ω. Determine and plot the voltage at the
load resistor and the current in the battery as functions of time by constructing appropriate
voltage and current reflection diagrams: Referring to the figure, closing the switch launches a
voltage wave whose value is given by Eq. (50):

V +
1 =

V0Z0

Rg + Z0
=

50
75

V0 =
2
3
V0

We note that ΓL = 0, since the load impedance is matched to that of the line. So the voltage
wave traverses the line and does not reflect. The voltage reflection diagram would be that
shown in Fig. 11.21a, except that no waves are present after time t = l/v. Likewise, the
current reflection diagram is that of Fig. 11.22a, except, again, no waves exist after t = l/v.
The voltage at the load will be just V +

1 = (2/3)V0 for times beyond l/v. The current through
the battery is found through

I+
1 =

V +
1

Z0
=

V0

75
A

This current initiates at t = 0, and continues indefinitely.

11.38. Repeat Problem 37, with Z0 = 50Ω, and RL = Rg = 25Ω. Carry out the analysis for the time
period 0 < t < 8l/v. At the generator end, we have Γg = −1/3, as before. The difference is
at the load end, where ΓL = −1/3, whereas in Problem 37, the load was matched. The initial
wave, as in the last problem, is of magnitude V + = (2/3)V0. Using these values, voltage and
current reflection diagrams are constructed, and are shown below:
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11.38. (continued) From the diagrams, voltage and current plots are constructed. First, the load
voltage is found by adding voltages along the right side of the voltage diagram at the indicated
times. Second, the current through the battery is found by adding currents along the left side
of the current reflection diagram. Both plots are shown below, where currents and voltages
are expressed to three significant figures. The steady state values, VL = 0.5V and IB = 0.02A,
are expected as t → ∞.

11.39. In the transmission line of Fig. 11.20, Z0 = 50 Ω and RL = Rg = 25 Ω. The switch is closed
at t = 0 and is opened again at time t = l/4v, thus creating a rectangular voltage pulse in
the line. Construct an appropriate voltage reflection diagram for this case and use it to make
a plot of the voltage at the load resistor as a function of time for 0 < t < 8l/v (note that
the effect of opening the switch is to initiate a second voltage wave, whose value is such that
it leaves a net current of zero in its wake): The value of the initial voltage wave, formed by
closing the switch, will be

V + =
Z0

Rg + Z0
V0 =

50
25 + 50

V0 =
2
3
V0

On opening the switch, a second wave, V +′, is generated which leaves a net current behind
it of zero. This means that V +′ = −V + = −(2/3)V0. Note also that when the switch is
opened, the reflection coefficient at the generator end of the line becomes unity. The reflection
coefficient at the load end is ΓL = (25 − 50)/(25 + 50) = −(1/3). The reflection diagram is
now constructed in the usual manner, and is shown on the next page. The path of the second
wave as it reflects from either end is shown in dashed lines, and is a replica of the first wave
path, displaced later in time by l/(4v).a All values for the second wave after each reflection are
equal but of opposite sign to the immediately preceding first wave values. The load voltage as
a function of time is found by accumulating voltage values as they are read moving up along
the right hand boundary of the chart. The resulting function, plotted just below the reflection
diagram, is found to be a sequence of pulses that alternate signs. The pulse amplitudes are
calculated as follows:
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11.39. (continued)

l

v
< t <

5l

4v
: V1 =

(
1 − 1

3

)
V + = 0.44 V0

3l

v
< t <

13l

4v
: V2 = −1

3

(
1 − 1

3

)
V + = −0.15 V0

5l

v
< t <

21l

4v
: V3 =

(
1
3

)2 (
1 − 1

3

)
V + = 0.049 V0

7l

v
< t <

29l

4v
: V4 = −

(
1
3

)3 (
1 − 1

3

)
V + = −0.017 V0
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11.40. In the charged line of Fig. 11.25, the characteristic impedance is Z0 = 100Ω, and Rg = 300Ω.
The line is charged to initial voltage V0 = 160 V, and the switch is closed at t = 0. Determine
and plot the voltage and current through the resistor for time 0 < t < 8l/v (four round trips).
This problem accompanies Example 13.6 as the other special case of the basic charged line
problem, in which now Rg > Z0. On closing the switch, the initial voltage wave is

V + = −V0
Z0

Rg + Z0
= −160

100
400

= −40 V

Now, with Γg = 1/2 and ΓL = 1, the voltage and current reflection diagrams are constructed as
shown below. Plots of the voltage and current at the resistor are then found by accumulating
values from the left sides of the two charts, producing the plots as shown.
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11.41. In the transmission line of Fig. 11.37, the switch is located midway down the line, and is
closed at t = 0. Construct a voltage reflection diagram for this case, where RL = Z0. Plot
the load resistor voltage as a function of time: With the left half of the line charged to V0,
closing the switch initiates (at the switch location) two voltage waves: The first is of value
−V0/2 and propagates toward the left; the second is of value V0/2 and propagates toward the
right. The backward wave reflects at the battery with Γg = −1. No reflection occurs at the
load end, since the load is matched to the line. The reflection diagram and load voltage plot
are shown below. The results are summarized as follows:

0 < t <
l

2v
: VL = 0

l

2v
< t <

3l

2v
: VL =

V0

2

t >
3l

2v
: VL = V0
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11.42. A simple frozen wave generator is shown in Fig. 11.38. Both switches are closed simultaneously
at t = 0. Construct an appropriate voltage reflection diagram for the case in which RL = Z0.
Determine and plot the load voltage as a function of time: Closing the switches sets up a total
of four voltage waves as shown in the diagram below. Note that the first and second waves
from the left are of magnitude V0, since in fact we are superimposing voltage waves from the
−V0 and +V0 charged sections acting alone. The reflection diagram is drawn and is used to
construct the load voltage with time by accumulating voltages up the right hand vertical axis.
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CHAPTER 12

12.1. Show that Exs = Aejk0z+φ is a solution to the vector Helmholtz equation, Sec. 12.1, Eq. (30),
for k0 = ω

√
µ0ε0 and any φ and A: We take

d2

dz2
Aejk0z+φ = (jk0)2Aejk0z+φ = −k2

0Exs

12.2. A 100-MHz uniform plane wave propagates in a lossless medium for which εr = 5 and µr = 1.
Find:

a) vp: vp = c/
√

εr = 3 × 108/
√

5 = 1.34 × 108 m/s.

b) β: β = ω/vp = (2π × 108)/(1.34 × 108) = 4.69 m−1.

c) λ: λ = 2π/β = 1.34 m.

d) Es: Assume real amplitude E0, forward z travel, and x polarization, and write
Es = E0 exp(−jβz)ax = E0 exp(−j4.69z)ax V/m.

e) Hs: First, the intrinsic impedance of the medium is η = η0/
√

εr = 377/
√

5 = 169 Ω.
Then Hs = (E0/η) exp(−jβz)ay = (E0/169) exp(−j4.69z)ay A/m.

f) < S >= (1/2)Re {Es × H∗
s} = (E2

0/337)az W/m2

12.3. An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m. Find
a) β: Since we have a uniform plane wave, β = ω/c, where we identify ω = 108 sec−1. Thus

β = 108/(3 × 108) = 0.33 rad/m.

b) λ: We know λ = 2π/β = 18.9 m.

c) E(x, t) at P (0.1, 0.2, 0.3) at t = 1 ns: Use E(x, t) = −η0H(x, t) = −(377)(10) cos(108t −
βx) = −3.77×103 cos(108t−βx). The vector direction of E will be −az, since we require
that S = E × H, where S is x-directed. At the given point, the relevant coordinate is
x = 0.1. Using this, along with t = 10−9 sec, we finally obtain

E(x, t) = −3.77 × 103 cos[(108)(10−9) − (0.33)(0.1)]az = −3.77 × 103 cos(6.7 × 10−2)az

= −3.76 × 103az V/m

12.4. Given E(z, t) = E0e
−αz sin(ωt − βz)ax, and η = |η|ejφ, find:

a) Es: Using the Euler identity for the sine, we can write the given field in the form:

E(z, t) = E0 e−αz

[
ej(ωt−βz) − e−j(ωt−βz)

2j

]
ax = −jE0

2
e−αzej(ωt−βz)ax + c.c.

We therefore identify the phasor form as Es(z) = −jE0e
−αze−jβz ax V/m.

b) Hs: With positive z travel, and with Es along positive x, Hs will lie along positive y.
Therefore Hs = −jE0/|η| e−αze−jβze−jφ ay A/m.

c) < S >:

< S >= (1/2)Re{Es × H∗
s} =

E2
0

2|η| e−2αz cos φaz W/m2
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12.5. A 150-MHz uniform plane wave in free space is described by Hs = (4 + j10)(2ax + jay)e−jβz

A/m.

a) Find numerical values for ω, λ, and β: First, ω = 2π×150×106 = 3π × 108 sec−1. Second,
for a uniform plane wave in free space, λ = 2πc/ω = c/f = (3 × 108)/(1.5 × 108) = 2 m.
Third, β = 2π/λ = π rad/m.

b) Find H(z, t) at t = 1.5 ns, z = 20 cm: Use

H(z, t) = Re{Hse
jωt} = Re{(4 + j10)(2ax + jay)(cos(ωt − βz) + j sin(ωt − βz)}

= [8 cos(ωt − βz) − 20 sin(ωt − βz)]ax − [10 cos(ωt − βz) + 4 sin(ωt − βz)]ay

. Now at the given position and time, ωt− βz = (3π × 108)(1.5× 10−9)− π(0.20) = π/4.
And cos(π/4) = sin(π/4) = 1/

√
2. So finally,

H(z = 20cm, t = 1.5ns) = − 1√
2

(12ax + 14ay) = −8.5ax − 9.9ay A/m

c) What is |E|max? Have |E|max = η0|H|max, where

|H|max =
√

Hs · H∗
s = [4(4 + j10)(4 − j10) + (j)(−j)(4 + j10)(4 − j10)]1/2 = 24.1 A/m

Then |E|max = 377(24.1) = 9.08 kV/m.

12.6. A linearly-polarized plane wave in free space has electric field given by
E(z, t) = (25ax − 30az) cos(ωt − 50y) V/m. Find:

a) ω: In free space, β = k0 = ω/c ⇒ ω = 50c = 50 × 3 × 108 = 1.5 × 1010 rad/s.

b) Es = (25ax − 30az) exp(−j50y) V/m.

c) Hs: We use the fact that each to component of Es, there will be an orthogonal Hs

component, oriented such that the cross product of Es with Hs gives the propagation
direction. We obtain

Hs = − 1
η0

(25az + 30ax) e−j50y

d) < S > =
1
2
Re{Es × H∗

s} =
1

2η0
Re {(25ax − 30az) × (−25az − 30ax)}

=
1

2(377)
[
(25)2 + (30)2

]
ay = 2.0ay W/m2

12.7. The phasor magnetic field intensity for a 400-MHz uniform plane wave propagating in a
certain lossless material is (2ay − j5az)e−j25x A/m. Knowing that the maximum amplitude
of E is 1500 V/m, find β, η, λ, vp, εr, µr, and H(x, y, z, t): First, from the phasor expression,
we identify β = 25 m−1 from the argument of the exponential function. Next, we evaluate
H0 = |H| =

√
H · H∗ =

√
22 + 52 =

√
29. Then η = E0/H0 = 1500/

√
29 = 278.5 Ω. Then

λ = 2π/β = 2π/25 = .25 m = 25 cm. Next,

vp =
ω

β
=

2π × 400 × 106

25
= 1.01 × 108 m/s
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12.7. (continued) Now we note that

η = 278.5 = 377
√

µr

εr
⇒ µr

εr
= 0.546

And
vp = 1.01 × 108 =

c√
µrεr

⇒ µrεr = 8.79

We solve the above two equations simultaneously to find εr = 4.01 and µr = 2.19. Finally,

H(x, y, z, t) = Re
{
(2ay − j5az)e−j25xejωt

}
= 2 cos(2π × 400 × 106t − 25x)ay + 5 sin(2π × 400 × 106t − 25x)az

= 2 cos(8π × 108t − 25x)ay + 5 sin(8π × 108t − 25x)az A/m

12.8. Let the fields, E(z, t) = 1800 cos(107πt − βz)ax V/m and H(z, t) = 3.8 cos(107πt − βz)ay

A/m, represent a uniform plane wave propagating at a velocity of 1.4 × 108 m/s in a perfect
dielectric. Find:
a) β = ω/v = (107π)/(1.4 × 108) = 0.224 m−1.

b) λ = 2π/β = 2π/.224 = 28.0 m.

c) η = |E|/|H| = 1800/3.8 = 474 Ω.

d) µr: Have two equations in the two unknowns, µr and εr: η = η0

√
µr/εr and β =

ω
√

µrεr/c. Eliminate εr to find

µr =
[
βcη

ωη0

]2

=
[
(.224)(3 × 108)(474)

(107π)(377)

]2

= 2.69

e) εr = µr(η0/η)2 = (2.69)(377/474)2 = 1.70.

12.9. A certain lossless material has µr = 4 and εr = 9. A 10-MHz uniform plane wave is propagating
in the ay direction with Ex0 = 400 V/m and Ey0 = Ez0 = 0 at P (0.6, 0.6, 0.6) at t = 60 ns.

a) Find β, λ, vp, and η: For a uniform plane wave,

β = ω
√

µε =
ω

c

√
µrεr =

2π × 107

3 × 108

√
(4)(9) = 0.4π rad/m

Then λ = (2π)/β = (2π)/(0.4π) = 5 m. Next,

vp =
ω

β
=

2π × 107

4π × 10−1
= 5 × 107 m/s

Finally,

η =
√

µ

ε
= η0

√
µr

εr
= 377

√
4
9

= 251 Ω
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b) Find E(t) (at P ): We are given the amplitude at t = 60 ns and at y = 0.6 m. Let the
maximum amplitude be Emax, so that in general, Ex = Emax cos(ωt− βy). At the given
position and time,

Ex = 400 = Emax cos[(2π × 107)(60 × 10−9) − (4π × 10−1)(0.6)] = Emax cos(0.96π)
= −0.99Emax

So Emax = (400)/(−0.99) = −403 V/m. Thus at P, E(t) = −403 cos(2π × 107t) V/m.

c) Find H(t): First, we note that if E at a given instant points in the negative x direction,
while the wave propagates in the forward y direction, then H at that same position and
time must point in the positive z direction. Since we have a lossless homogeneous medium,
η is real, and we are allowed to write H(t) = E(t)/η, where η is treated as negative and
real. Thus

H(t) = Hz(t) =
Ex(t)

η
=

−403
−251

cos(2π × 10−7t) = 1.61 cos(2π × 10−7t) A/m

12.10. In a medium characterized by intrinsic impedance η = |η|ejφ, a linearly-polarized plane wave
propagates, with magnetic field given as Hs = (H0yay + H0zaz) e−αxe−jβx. Find:

a) Es: Requiring orthogonal components of Es for each component of Hs, we find

Es = |η| [H0z ay − H0y az] e−αx e−jβx ejφ

b) E(x, t) = Re {Ese
jωt} = |η| [H0z ay − H0y az] e−αx cos(ωt − βx + φ).

c) H(x, t) = Re {Hse
jωt} = [H0y ay + H0z az] e−αx cos(ωt − βx).

d) < S >=
1
2
Re{Es × H∗

s} =
1
2
|η|

[
H2

0y + H2
0z

]
e−2αx cos φax W/m2

12.11. A 2-GHz uniform plane wave has an amplitude of Ey0 = 1.4 kV/m at (0, 0, 0, t = 0) and is
propagating in the az direction in a medium where ε′′ = 1.6 × 10−11 F/m, ε′ = 3.0 × 10−11

F/m, and µ = 2.5 µH/m. Find:

a) Ey at P (0, 0, 1.8cm) at 0.2 ns: To begin, we have the ratio, ε′′/ε′ = 1.6/3.0 = 0.533. So

α = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

− 1


1/2

= (2π × 2 × 109)

√
(2.5 × 10−6)(3.0 × 10−11)

2

[√
1 + (.533)2 − 1

]1/2

= 28.1 Np/m

Then

β = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

+ 1


1/2

= 112 rad/m

Thus in general,

Ey(z, t) = 1.4e−28.1z cos(4π × 109t − 112z) kV/m
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2.11a. (continued) Evaluating this at t = 0.2 ns and z = 1.8 cm, find

Ey(1.8 cm, 0.2 ns) = 0.74 kV/m

b) Hx at P at 0.2 ns: We use the phasor relation, Hxs = −Eys/η where

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)
=

√
2.5 × 10−6

3.0 × 10−11

1√
1 − j(.533)

= 263 + j65.7 = 271 � 14◦ Ω

So now

Hxs = −Eys

η
= − (1.4 × 103)e−28.1ze−j112z

271ej14◦ = −5.16e−28.1ze−j112ze−j14◦
A/m

Then
Hx(z, t) = −5.16e−28.1z cos(4π × 10−9t − 112z − 14◦)

This, when evaluated at t = 0.2 ns and z = 1.8 cm, yields

Hx(1.8 cm, 0.2 ns) = −3.0 A/m

12.12. The plane wave Es = 300e−jkxay V/m is propagating in a material for which µ = 2.25 µH/m,
ε′ = 9 pF/m, and ε′′ = 7.8 pF/m. If ω = 64 Mrad/s, find:
a) α: We use the general formula, Eq. (35):

α = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

− 1


1/2

= (64 × 106)

√
(2.25 × 10−6)(9 × 10−12)

2

[√
1 + (.867)2 − 1

]1/2

= 0.116 Np/m

b) β: Using (36), we write

β = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

+ 1


1/2

= .311 rad/m

c) vp = ω/β = (64 × 106)/(.311) = 2.06 × 108 m/s.

d) λ = 2π/β = 2π/(.311) = 20.2 m.

e) η: Using (39):

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)
=

√
2.25 × 10−6

9 × 10−12

1√
1 − j(.867)

= 407 + j152 = 434.5ej.36 Ω

f) Hs: With Es in the positive y direction (at a given time) and propagating in the positive
x direction, we would have a positive z component of Hs, at the same time. We write
(with jk = α + jβ):

Hs =
Es

η
az =

300
434.5ej.36

e−jkxaz = 0.69e−αxe−jβxe−j.36az

= 0.69e−.116xe−j.311xe−j.36az A/m
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2.12g) E(3, 2, 4, 10ns): The real instantaneous form of E will be

E(x, y, z, t) = Re
{
Ese

jωt
}

= 300e−αx cos(ωt − βx)ay

Therefore

E(3, 2, 4, 10ns) = 300e−.116(3) cos[(64 × 106)(10−8) − .311(3)]ay = 203 V/m

12.13. Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 Ω for a uniform plane wave propagating in the az

direction. If ω = 300 Mrad/s, find µ, ε′, and ε′′: We begin with

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)
= 450 + j60

and
jk = jω

√
µε′

√
1 − j(ε′′/ε′) = 0.2 + j1.5

Then
ηη∗ =

µ

ε′
1√

1 + (ε′′/ε′)2
= (450 + j60)(450 − j60) = 2.06 × 105 (1)

and
(jk)(jk)∗ = ω2µε′

√
1 + (ε′′/ε′)2 = (0.2 + j1.5)(0.2 − j1.5) = 2.29 (2)

Taking the ratio of (2) to (1),

(jk)(jk)∗

ηη∗ = ω2(ε′)2
(
1 + (ε′′/ε′)2

)
=

2.29
2.06 × 105

= 1.11 × 10−5

Then with ω = 3 × 108,

(ε′)2 =
1.11 × 10−5

(3 × 108)2 (1 + (ε′′/ε′)2)
=

1.23 × 10−22

(1 + (ε′′/ε′)2)
(3)

Now, we use Eqs. (35) and (36). Squaring these and taking their ratio gives

α2

β2
=

√
1 + (ε′′/ε′)2√
1 + (ε′′/ε′)2

=
(0.2)2

(1.5)2

We solve this to find ε′′/ε′ = 0.271. Substituting this result into (3) gives ε′ = 1.07 × 10−11

F/m. Since ε′′/ε′ = 0.271, we then find ε′′ = 2.90× 10−12 F/m. Finally, using these results in
either (1) or (2) we find µ = 2.28 × 10−6 H/m. Summary: µ = 2.28 × 10−6 H/m,
ε′ = 1.07 × 10−11 F/m, and ε′′ = 2.90 × 10−12 F/m.
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12.14. A certain nonmagnetic material has the material constants ε′r = 2 and ε′′/ε′ = 4 × 10−4 at
ω = 1.5 Grad/s. Find the distance a uniform plane wave can propagate through the material
before:
a) it is attenuated by 1 Np: First, ε′′ = (4 × 104)(2)(8.854 × 10−12) = 7.1 × 10−15 F/m.

Then, since ε′′/ε′ << 1, we use the approximate form for α, given by Eq. (51) (written
in terms of ε′′):

α
.=

ωε′′

2

√
µ

ε′
=

(1.5 × 109)(7.1 × 10−15)
2

377√
2

= 1.42 × 10−3 Np/m

The required distance is now z1 = (1.42 × 10−3)−1 = 706 m

b) the power level is reduced by one-half: The governing relation is e−2αz1/2 = 1/2, or
z1/2 = ln 2/2α = ln 2/2(1.42 × 10−3) = 244 m.

c) the phase shifts 360◦: This distance is defined as one wavelength, where λ = 2π/β
= (2πc)/(ω

√
ε′r) = [2π(3 × 108)]/[(1.5 × 109)

√
2] = 0.89 m.

12.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small
region. Calculate the wavelength in centimeters and the attenuation in nepers per meter if
the wave is propagating in a non-magnetic material for which
a) ε′r = 1 and ε′′r = 0: In a non-magnetic material, we would have:

α = ω

√
µ0ε0ε′r

2




√
1 +

(
ε′′r
ε′r

)2

− 1


1/2

and

β = ω

√
µ0ε0ε′r

2




√
1 +

(
ε′′r
ε′r

)2

+ 1


1/2

With the given values of ε′r and ε′′r , it is clear that β = ω
√

µ0ε0 = ω/c, and so

λ = 2π/β = 2πc/ω = 3 × 1010/1010 = 3 cm. It is also clear that α = 0.

b) ε′r = 1.04 and ε′′r = 9.00×10−4: In this case ε′′r/ε′r << 1, and so β
.= ω

√
ε′r/c = 2.13 cm−1.

Thus λ = 2π/β = 2.95 cm. Then

α
.=

ωε′′

2

√
µ

ε′
=

ωε′′r
2

√
µ0ε0√
ε′r

=
ω

2c

ε′′r√
ε′r

=
2π × 1010

2 × 3 × 108

(9.00 × 10−4)√
1.04

= 9.24 × 10−2 Np/m
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2.15c) ε′r = 2.5 and ε′′r = 7.2: Using the above formulas, we obtain

β =
2π × 1010

√
2.5

(3 × 1010)
√

2




√
1 +

(
7.2
2.5

)2

+ 1


1/2

= 4.71 cm−1

and so λ = 2π/β = 1.33 cm. Then

α =
2π × 1010

√
2.5

(3 × 108)
√

2




√
1 +

(
7.2
2.5

)2

− 1


1/2

= 335 Np/m

12.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and
its Q is ωCR, where R is the parallel resistance. Assume an idealized parallel plate capacitor
having a dielecric characterized by σ, ε′, and µr. Find both the power factor and Q in terms
of the loss tangent: First, the impedance will be:

Z =
R

(
1

jωC

)
R +

(
1

jωC

) = R
1 − jRωC

1 + (RωC)2
= R

1 − jQ

1 + Q2

Now R = d/(σA) and C = ε′A/d, and so Q = ωε′/σ = 1/l.t. Then the power factor is
P.F = cos[tan−1(−Q)] = 1/

√
1 + Q2.

12.17. Let η = 250 + j30 Ω and jk = 0.2 + j2 m−1 for a uniform plane wave propagating in the az

direction in a dielectric having some finite conductivity. If |Es| = 400 V/m at z = 0, find:
a) < S > at z = 0 and z = 60 cm: Assume x-polarization for the electric field. Then

< S > =
1
2
Re {Es × H∗

s} =
1
2
Re

{
400e−αze−jβzax × 400

η∗ e−αzejβzay

}

=
1
2
(400)2e−2αzRe

{
1
η∗

}
az = 8.0 × 104e−2(0.2)zRe

{
1

250 − j30

}
az

= 315 e−2(0.2)z az W/m2

Evaluating at z = 0, obtain < S > (z = 0) = 315az W/m2,
and at z = 60 cm, Pz,av(z = 0.6) = 315e−2(0.2)(0.6)az = 248az W/m2.

b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point
a flaw becomes evident in the problem statement, since solving this part in two different
ways gives results that are not the same. I will demonstrate: In the first method, we use
Poynting’s theorem in point form (first equation at the top of p. 366), which we modify
for the case of time-average fields to read:

−∇· < S >=< J · E >

where the right hand side is the average power dissipation per volume. Note that the
additional right-hand-side terms in Poynting’s theorem that describe changes in energy
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stored in the fields will both be zero in steady state. We apply our equation to the result
of part a:

< J · E >= −∇· < S >= − d

dz
315 e−2(0.2)z = (0.4)(315)e−2(0.2)z = 126e−0.4z W/m3

At z = 60 cm, this becomes < J · E >= 99.1 W/m3. In the second method, we solve for
the conductivity and evaluate < J · E >= σ < E2 >. We use

jk = jω
√

µε′
√

1 − j(ε′′/ε′)

and

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)

We take the ratio,
jk

η
= jωε′

[
1 − j

(
ε′′

ε′

)]
= jωε′ + ωε′′

Identifying σ = ωε′′, we find

σ = Re
{

jk

η

}
= Re

{
0.2 + j2

250 + j30

}
= 1.74 × 10−3 S/m

Now we find the dissipated power per volume:

σ < E2 >= 1.74 × 10−3

(
1
2

) (
400e−0.2z

)2

At z = 60 cm, this evaluates as 109 W/m3. One can show that consistency between the
two methods requires that

Re
{

1
η∗

}
=

σ

2α

This relation does not hold using the numbers as given in the problem statement and the
value of σ found above. Note that in Problem 12.13, where all values are worked out, the
relation does hold and consistent results are obtained using both methods.

12.18. Given, a 100MHz uniform plane wave in a medium known to be a good dielectric. The phasor
electric field is Es = 4e−0.5ze−j20zax V/m. Not stated in the problem is the permeabil-
ity, which we take to be µ0. Also, the specified distance in part f should be 10m, not 1km.
Determine:

a) ε′: As a first step, it is useful to see just how much of a good dielectric we have. We use
the good dielectric approximations, Eqs. (60a) and (60b), with σ = ωε′′. Using these, we
take the ratio, β/α, to find

β

α
=

20
0.5

=
ω
√

µε′
[
1 + (1/8)(ε′′/ε′)2

]
(ωε′′/2)

√
µ/ε′

= 2
(

ε′

ε′′

)
+

1
4

(
ε′′

ε′

)

This becomes the quadratic equation:(
ε′′

ε′

)2

− 160
(

ε′′

ε′

)
+ 8 = 0
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12.18a (continued) The solution to the quadratic is (ε′′/ε′) = 0.05, which means that we can neglect
the second term in Eq. (60b), so that β

.= ω
√

µε′ = (ω/c)
√

ε′r. With the given frequency of
100 MHz, and with µ = µ0, we find

√
ε′r = 20(3/2π) = 9.55, so that ε′r = 91.3, and finally

ε′ = ε′rε0 = 8.1 × 10−10 F/m.

b) ε′′: Using Eq. (60a), the set up is

α = 0.5 =
ωε′′

2

√
µ

ε′
⇒ ε′′ =

2(0.5)
2π × 108

√
ε′

µ
=

10−8

2π(377)

√
91.3 = 4.0 × 10−11 F/m

c) η: Using Eq. (62b), we find

η
.=

√
µ

ε′

[
1 + j

1
2

(
ε′′

ε′

)]
=

377√
91.3

(1 + j.025) = (39.5 + j0.99) ohms

d) Hs: This will be a y-directed field, and will be

Hs =
Es

η
ay =

4
(39.5 + j0.99)

e−0.5ze−j20z ay = 0.101e−0.5ze−j20ze−j0.025 ay A/m

e) < S >: Using the given field and the result of part d, obtain

< S >=
1
2
Re{Es × H∗

s} =
(0.101)(4)

2
e−2(0.5)z cos(0.025)az = 0.202e−z az W/m2

f) the power in watts that is incident on a rectangular surface measuring 20m x 30m at
z = 10m (not 1km): At 10m, the power density is < S >= 0.202e−10 = 9.2×10−6 W/m2.
The incident power on the given area is then P = 9.2 × 10−6 × (20)(30) = 5.5 mW.

12.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between
the cylinders is filled with a perfect dielectric for which ε = 10−9/4π F/m and µr = 1. If E in
this region is (500/ρ) cos(ωt − 4z)aρ V/m, find:

a) ω, with the help of Maxwell’s equations in cylindrical coordinates: We use the two curl
equations, beginning with ∇× E = −∂B/∂t, where in this case,

∇× E =
∂Eρ

∂z
aφ =

2000
ρ

sin(ωt − 4z)aφ = −∂Bφ

∂t
aφ

So
Bφ =

∫
2000

ρ
sin(ωt − 4z)dt =

2000
ωρ

cos(ωt − 4z) T

Then
Hφ =

Bφ

µ0
=

2000
(4π × 10−7)ωρ

cos(ωt − 4z) A/m

We next use ∇× H = ∂D/∂t, where in this case

∇× H = −∂Hφ

∂z
aρ +

1
ρ

∂(ρHφ)
∂ρ

az

where the second term on the right hand side becomes zero when substituting our Hφ.
So

∇× H = −∂Hφ

∂z
aρ = − 8000

(4π × 10−7)ωρ
sin(ωt − 4z)aρ =

∂Dρ

∂t
aρ

And

Dρ =
∫

− 8000
(4π × 10−7)ωρ

sin(ωt − 4z)dt =
8000

(4π × 10−7)ω2ρ
cos(ωt − 4z) C/m2
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12.19a. (continued) Finally, using the given ε,

Eρ =
Dρ

ε
=

8000
(10−16)ω2ρ

cos(ωt − 4z) V/m

This must be the same as the given field, so we require

8000
(10−16)ω2ρ

=
500
ρ

⇒ ω = 4 × 108 rad/s

b) H(ρ, z, t): From part a, we have

H(ρ, z, t) =
2000

(4π × 10−7)ωρ
cos(ωt − 4z)aφ =

4.0
ρ

cos(4 × 108t − 4z)aφ A/m

c) S(ρ, φ, z): This will be

S(ρ, φ, z) = E × H =
500
ρ

cos(4 × 108t − 4z)aρ × 4.0
ρ

cos(4 × 108t − 4z)aφ

=
2.0 × 10−3

ρ2
cos2(4 × 108t − 4z)az W/m2

d) the average power passing through every cross-section 8 < ρ < 20 mm, 0 < φ < 2π.
Using the result of part c, we find < S >= (1.0 × 103)/ρ2az W/m2. The power through
the given cross-section is now

P =
∫ 2π

0

∫ .020

.008

1.0 × 103

ρ2
ρ dρ dφ = 2π × 103 ln

(
20
8

)
= 5.7 kW

12.20. If Es = (60/r) sin θ e−j2r aθ V/m, and Hs = (1/4πr) sin θ e−j2r aφ A/m in free space, find the
average power passing outward through the surface r = 106, 0 < θ < π/3, and 0 < φ < 2π.

< S >=
1
2
Re {Es × H∗

s} =
15 sin2 θ

2πr2
ar W/m2

Then, the requested power will be

Φ =
∫ 2π

0

∫ π/3

0

15 sin2 θ

2πr2
ar · ar r2 sin θdθdφ = 15

∫ π/3

0

sin3 θ dθ

= 15
(
−1

3
cos θ(sin2 θ + 2)

) ∣∣∣π/3

0
=

25
8

= 3.13 W

Note that the radial distance at the surface, r = 106 m, makes no difference, since the power
density dimishes as 1/r2.
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12.21. The cylindrical shell, 1 cm ¡ ρ ¡ 1.2 cm, is composed of a conducting material for which σ = 106

S/m. The external and internal regions are non-conducting. Let Hφ = 2000 A/m at ρ = 1.2
cm.

a) Find H everywhere: Use Ampere’s circuital law, which states:∮
H · dL = 2πρ(2000) = 2π(1.2 × 10−2)(2000) = 48π A = Iencl

Then in this case

J =
I

Area
az =

48
(1.44 − 1.00) × 10−4

az = 1.09 × 106 az A/m2

With this result we again use Ampere’s circuital law to find H everywhere within the
shell as a function of ρ (in meters):

Hφ1(ρ) =
1

2πρ

∫ 2π

0

∫ ρ

.01

1.09 × 106 ρ dρ dφ =
54.5
ρ

(104ρ2 − 1) A/m (.01 < ρ < .012)

Outside the shell, we would have

Hφ2(ρ) =
48π

2πρ
= 24/ρ A/m (ρ > .012)

Inside the shell (ρ < .01 m), Hφ = 0 since there is no enclosed current.

b) Find E everywhere: We use

E =
J
σ

=
1.09 × 106

106
az = 1.09az V/m

which is valid, presumeably, outside as well as inside the shell.

c) Find S everywhere: Use

P = E × H = 1.09az ×
54.5
ρ

(104ρ2 − 1)aφ

= −59.4
ρ

(104ρ2 − 1)aρ W/m2 (.01 < ρ < .012 m)

Outside the shell,

S = 1.09az ×
24
ρ

aφ = −26
ρ

aρ W/m2 (ρ > .012 m)
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12.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respec-
tively. Both conductors have thicknesses much greater than δ. The dielectric is lossless and
the operating frequency is 400 MHz. Calculate the resistance per meter length of the:
a) inner conductor: First

δ =
1√

πfµσ
=

1√
π(4 × 108)(4π × 10−7)(5.8 × 107)

= 3.3 × 10−6m = 3.3µm

Now, using (70) with a unit length, we find

Rin =
1

2πaσδ
=

1
2π(2 × 10−3)(5.8 × 107)(3.3 × 10−6)

= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

Rout =
a

b
Rin =

2
7
(0.42) = 0.12 ohms/m

c) transmission line: Since the two resistances found above are in series, the line resistance
is their sum, or R = Rin + Rout = 0.54 ohms/m.

12.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of
1.2 × 107 S/m. The inner and outer radii are 9 mm and 10 mm respectively. Calculate the
resistance per meter length at a frequency of
a) dc: In this case the current density is uniform over the entire tube cross-section. We

write:
R(dc) =

L

σA
=

1
(1.2 × 107)π(.012 − .0092)

= 1.4 × 10−3 Ω/m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin
depth is

δ(20MHz) = [πfµ0σ]−1/2 = [π(20 × 106)(4π × 10−7)(1.2 × 107)]−1/2 = 3.25 × 10−5 m

This is much less than the outer radius of the tube. Therefore we can approximate the
resistance using the formula:

R(20MHz) =
L

σA
=

1
2πbδ

=
1

(1.2 × 107)(2π(.01))(3.25 × 10−5)
= 4.1 × 10−2 Ω/m

c) 2 GHz: Using the same formula as in part b, we find the skin depth at 2 GHz to be δ =
3.25 × 10−6 m. The resistance (using the other formula) is R(2GHz) = 4.1 × 10−1 Ω/m.
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12.24a. Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 × 106 S/m and µr = 500
for the stainless steel interior, and find the depth of penetration:

δ =
1√

πfµσ
=

1√
π(2.45 × 109)(4π × 10−7)(1.2 × 106)

= 9.28 × 10−6m = 9.28µm

b) Let Es = 50� 0◦ V/m at the surface of the conductor, and plot a curve of the amplitude
of Es vs. the angle of Es as the field propagates into the stainless steel: Since the
conductivity is high, we use (62) to write α

.= β
.=
√

πfµσ = 1/δ. So, assuming that the
direction into the conductor is z, the depth-dependent field is written as

Es(z) = 50e−αze−jβz = 50e−z/δe−jz/δ = 50 exp(−z/9.28)︸ ︷︷ ︸
amplitude

exp(−j z/9.28︸ ︷︷ ︸
angle

)

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of
e−x versus x, where x = z/9.28; the starting amplitude is 50 and the 1/e amplitude (at
z = 9.28 µm) is 18.4.

12.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength
of 0.3 mm and a velocity of 3× 105 m/s. Assuming the conductor is non-magnetic, determine
the frequency and the conductivity: First, we use

f =
v

λ
=

3 × 105

3 × 10−4
= 109 Hz = 1 GHz

Next, for a good conductor,

δ =
λ

2π
=

1√
πfµσ

⇒ σ =
4π

λ2fµ
=

4π

(9 × 10−8)(109)(4π × 10−7)
= 1.1 × 105 S/m

12.26. The dimensions of a certain coaxial transmission line are a = 0.8mm and b = 4mm. The outer
conductor thickness is 0.6mm, and all conductors have σ = 1.6 × 107 S/m.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

δ =
1√

πfµσ
=

1√
π(2.4 × 108)(4π × 10−7)(1.6 × 107)

= 2.57 × 10−6m = 2.57µm

Then, using (70) with a unit length, we find

Rin =
1

2πaσδ
=

1
2π(0.8 × 10−3)(1.6 × 107)(2.57 × 10−6)

= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

Rout =
a

b
Rin =

0.8
4

(4.84) = 0.97 ohms/m

The net resistance per length is then the sum, R = Rin + Rout = 5.81 ohms/m.
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12.26b. Use information from Secs. 6.4 and 9.10 to find C and L, the capacitance and inductance per
unit length, respectively. The coax is air-filled. From those sections, we find (in free space)

C =
2πε0

ln(b/a)
=

2π(8.854 × 10−12)
ln(4/.8)

= 3.46 × 10−11 F/m

L =
µ0

2π
ln(b/a) =

4π × 10−7

2π
ln(4/.8) = 3.22 × 10−7 H/m

c) Find α and β if α+ jβ =
√

jωC(R + jωL): Taking real and imaginary parts of the given
expression, we find

α = Re
{√

jωC(R + jωL)
}

=
ω
√

LC√
2




√
1 +

(
R

ωL

)2

− 1


1/2

and

β = Im
{√

jωC(R + jωL)
}

=
ω
√

LC√
2




√
1 +

(
R

ωL

)2

+ 1


1/2

These can be found by writing out α = Re
{√

jωC(R + jωL)
}

= (1/2)
√

jωC(R + jωL)+
c.c., where c.c denotes the complex conjugate. The result is squared, terms collected, and
the square root taken. Now, using the values of R, C, and L found in parts a and b, we
find α = 3.0 × 10−2 Np/m and β = 50.3 rad/m.

12.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to
evaluate the following ratios for a uniform plane wave having ω = 4 × 1010 rad/s:
a) αTef/αbrass: From the appendix we find ε′′/ε′ = .0003 for Teflon, making the material a

good dielectric. Also, for Teflon, ε′r = 2.1. For brass, we find σ = 1.5 × 107 S/m, making
brass a good conductor at the stated frequency. For a good dielectric (Teflon) we use the
approximations:

α
.=

σ

2

√
µ

ε′
=

(
ε′′

ε′

) (
1
2

)
ω
√

µε′ =
1
2

(
ε′′

ε′

)
ω

c

√
ε′r

β
.= ω

√
µε′

[
1 +

1
8

(
ε′′

ε′

)]
.= ω

√
µε′ =

ω

c

√
ε′r

For brass (good conductor) we have

α
.= β

.=
√

πfµσbrass =

√
π

(
1
2π

)
(4 × 1010)(4π × 10−7)(1.5 × 107) = 6.14 × 105 m−1

Now

αTef

αbrass
=

1/2 (ε′′/ε′) (ω/c)
√

ε′r√
πfµσbrass

=
(1/2)(.0003)(4 × 1010/3 × 108)

√
2.1

6.14 × 105
= 4.7 × 10−8

b)

λTef

λbrass
=

(2π/βTef)
(2π/βbrass)

=
βbrass

βTef
=

c
√

πfµσbrass

ω
√

ε′r Tef

=
(3 × 108)(6.14 × 105)

(4 × 1010)
√

2.1
= 3.2 × 103
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12.27. (continued)

c)
vTef

vbrass
=

(ω/βTef)
(ω/βbrass)

=
βbrass

βTef
= 3.2 × 103 as before

12.28. A uniform plane wave in free space has electric field given by Es = 10e−jβxaz + 15e−jβxay

V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference
(in this case zero) with respect to time and position, the wave has linear polarization,
with the field vector in the yz plane at angle φ = tan−1(10/15) = 33.7◦ to the y axis.

b) Find Hs: With propagation in forward x, we would have

Hs =
−10
377

e−jβxay +
15
377

e−jβxaz A/m = −26.5e−jβxay + 39.8e−jβxaz mA/m

c) determine the average power density in the wave in W/m2: Use

Pavg =
1
2
Re {Es × H∗

s} =
1
2

[
(10)2

377
ax +

(15)2

377
ax

]
= 0.43ax W/m2 or Pavg = 0.43 W/m2

12.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direc-
tion. The electric field is given by the appropriate form of Eq. (100).
a) Determine the magnetic field phasor, Hs:

We begin, using (100), with Es = E0(ax + jay)e−jβz. We find the two components of
Hs separately, using the two components of Es. Specifically, the x component of Es is
associated with a y component of Hs, and the y component of Es is associated with a
negative x component of Hs. The result is

Hs =
E0

η0
(ay − jax) e−jβz

b) Determine an expression for the average power density in the wave in W/m2 by direct
application of Eq. (77): We have

Pz,avg =
1
2
Re(Es × H∗

s) =
1
2
Re

(
E0(ax + jay)e−jβz × E0

η0
(ay − jax)e+jβz

)

=
E2

0

η0
az W/m2 (assuming E0 is real)
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12.30. The electric field of a uniform plane wave in free space is given by Es = 10(az + jax)e−j50y.
Determine:

a) f : From the given field, we identify β = 50 = ω/c (in free space), so that f = ω/2π =
50c/2π = 2.39 GHz.

b) Hs: Each of the two components of Es must pair with a magnetic field vector, such that
the cross product of electric with magnetic field gives a vector in the positive y direction.
The overall magnitude is the electric field magnitude divided by the free space intrinsic
impedance. Thus

Hs =
10
377

(ax − jaz) e−j50y

c) < S >=
1
2
Re{Es × H∗

s} =
50
377

[(az × ax) − (ax × az)] =
100
377

ay = 0.27ay W/m2

d) Describe the polarization of the wave: This can be seen by writing the electric field in
real instantaneous form, and then evaluating the result at y = 0:

E(0, t) = 10 [cos(ωt)az − sin(ωt)ax]

At t = 0, the field is entirely along z, and then acquires an increasing negative x com-
ponent as t increases. The field therefore rotates clockwise in the y = 0 plane when
looking back toward the plane from positive y. Since the wave propagates in the positive
y direction and has equal x and z amplitudes, we identify the polarization as left circular.

12.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a
lossless anisotropic material, in which the dielectric constant encountered by waves polarized
along y (εry) differs from that seen by waves polarized along x (εrx). Suppose εrx = 2.15,
εry = 2.10, and the wave electric field at input is polarized at 45◦ to the positive x and y axes.
Assume free space wavelength λ.
a) Determine the shortest length of the material such that the wave as it emerges from the

output end is circularly polarized: With the input field at 45◦, the x and y components are
of equal magnitude, and circular polarization will result if the phase difference between
the components is π/2. Our requirement over length L is thus βxL − βyL = π/2, or

L =
π

2(βx − βy)
=

πc

2ω(
√

εrx −√
εry)

With the given values, we find,

L =
(58.3)πc

2ω
= 58.3

λ

4
= 14.6 λ

b) Will the output wave be right- or left-circularly-polarized? With the dielectric constant
greater for x-polarized waves, the x component will lag the y component in time at the out-
put. The field can thus be written as E = E0(ay−jax), which is left circular polarization.
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12.32. Suppose that the length of the medium of Problem 12.31 is made to be twice that as determined
in the problem. Describe the polarization of the output wave in this case: With the length
doubled, a phase shift of π radians develops between the two components. At the input, we
can write the field as Es(0) = E0(ax + ay). After propagating through length L, we would
have,

Es(L) = E0[e−jβxLax + e−jβyLay] = E0e
−jβxL[ax + e−j(βy−βx)Lay]

where (βy −βx)L = −π (since βx > βy), and so Es(L) = E0e
−jβxL[ax−ay]. With the reversal

of the y component, the wave polarization is rotated by 90◦, but is still linear polarization.

12.33. Given a wave for which Es = 15e−jβzax + 18e−jβzejφay V/m, propagating in a medium
characterized by complex intrinsic impedance, η.

a) Find Hs: With the wave propagating in the forward z direction, we find:

Hs =
1
η

[
−18ejφax + 15ay

]
e−jβz A/m

b) Determine the average power density in W/m2: We find

Pz,avg =
1
2
Re {Es × H∗

s} =
1
2
Re

{
(15)2

η∗ +
(18)2

η∗

}
= 275 Re

{
1
η∗

}
W/m2

12.34. Given the general elliptically-polarized wave as per Eq. (93):

Es = [Ex0ax + Ey0e
jφay]e−jβz

a) Show, using methods similar to those of Example 12.7, that a linearly polarized wave
results when superimposing the given field and a phase-shifted field of the form:

Es = [Ex0ax + Ey0e
−jφay]e−jβzejδ

where δ is a constant: Adding the two fields gives

Es,tot =
[
Ex0

(
1 + ejδ

)
ax + Ey0

(
ejφ + e−jφejδ

)
ay

]
e−jβz

=


Ex0e

jδ/2
(
e−jδ/2 + ejδ/2

)
︸ ︷︷ ︸

2 cos(δ/2)

ax + Ey0e
jδ/2

(
e−jδ/2ejφ + e−jφejδ/2

)
︸ ︷︷ ︸

2 cos(φ−δ/2)

ay


 e−jβz

This simplifies to Es,tot = 2 [Ex0 cos(δ/2)ax + Ey0 cos(φ − δ/2)ay] ejδ/2e−jβz, which is
linearly polarized.

b) Find δ in terms of φ such that the resultant wave is polarized along x: By inspecting the
part a result, we achieve a zero y component when 2φ − δ = π (or odd multiples of π).
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CHAPTER 13

13.1. A uniform plane wave in air, E+
x1 = E+

x10 cos(1010t − βz) V/m, is normally-incident on a
copper surface at z = 0. What percentage of the incident power density is transmitted into
the copper? We need to find the reflection coefficient. The intrinsic impedance of copper (a
good conductor) is

ηc =

√
jωµ

σ
= (1 + j)

√
ωµ

2σ
= (1 + j)

√
1010(4π × 107)
2(5.8 × 107)

= (1 + j)(.0104)

Note that the accuracy here is questionable, since we know the conductivity to only two
significant figures. We nevertheless proceed: Using η0 = 376.7288 ohms, we write

Γ =
ηc − η0

ηc + η0
=

.0104 − 376.7288 + j.0104

.0104 + 376.7288 + j.0104
= −.9999 + j.0001

Now |Γ|2 = .9999, and so the transmitted power fraction is 1 − |Γ|2 = .0001, or about 0.01%
is transmitted.

13.2. The plane z = 0 defines the boundary between two dielectrics. For z < 0, εr1 = 5, ε′′r1 = 0,
and µ1 = µ0. For z > 0, ε′r2 = 3, ε′′r2 = 0, and µ2 = µ0. Let E+

x1 = 200 cos(ωt− 15z) V/m and
find

a) ω: We have β = ω
√

µ0ε′1 = ω
√

ε′r1/c = 15. So ω = 15c/
√

ε′r1 = 15 × (3 × 108)/
√

5 =
2.0 × 109 s−1.

b) < S+
1 >: First we need η1 =

√
µ0/ε′1 = η0/

√
ε′r1 = 377/

√
5 = 169 ohms. Next

we apply Eq. (76), Chapter 12, to evaluate the Poynting vector (with no loss and
consequently with no phase difference between electric and magnetic fields). We find
< S+

1 >= (1/2)|E1|2/η1 az = (1/2)(200)2/169az = 119az W/m2.

c) < S−
1 >: First, we need to evaluate the reflection coefficient:

Γ =
η2 − η1

η2 + η1
=

η0/
√

ε′r2 − η0/
√

ε′r1
η0/

√
ε′r2 + η0/

√
ε′r1

=

√
ε′r1 −

√
ε′r2√

ε′r1 +
√

ε′r2
=

√
5 −

√
3√

5 +
√

3
= 0.13

Then < S−
1 >= −|Γ|2 < S+

1 >= −(0.13)2(119)az = −2.0az W/m2.

d) < S+
2 >: This will be the remaining power, propagating in the forward z direction, or

< S+
2 >= 117az W/m2.

13.3. A uniform plane wave in region 1 is normally-incident on the planar boundary separating
regions 1 and 2. If ε′′1 = ε′′2 = 0, while ε′r1 = µ3

r1 and ε′r2 = µ3
r2, find the ratio ε′r2/ε′r1 if 20% of

the energy in the incident wave is reflected at the boundary. There are two possible answers.
First, since |Γ|2 = .20, and since both permittivities and permeabilities are real, Γ = ±0.447.
we then set up

Γ = ±0.447 =
η2 − η1

η2 + η1
=

η0

√
(µr2/ε′r2) − η0

√
(µr1/ε′r1)

η0

√
(µr2/ε′r2) + η0

√
(µr1/ε′r1)

=

√
(µr2/µ3

r2) −
√

(µr1/µ3
r1)√

(µr2/µ3
r2) +

√
(µr1/µ3

r1)
=

µr1 − µr2

µr1 + µr2

1



13.3. (continued) Therefore

µr2

µr1
=

1 ∓ 0.447
1 ± 0.447

= (0.382, 2.62) ⇒ ε′r2
ε′r1

=
(

µr2

µr1

)3

= (0.056, 17.9)

13.4. A 10-MHz uniform plane wave having an initial average power density of 5W/m2 is normally-
incident from free space onto the surface of a lossy material in which ε′′2/ε′2 = 0.05, ε′r2 = 5,
and µ2 = µ0. Calculate the distance into the lossy medium at which the transmitted wave
power density is down by 10dB from the initial 5W/m2:

First, since ε′′2/ε′2 = 0.05 << 1, we recognize region 2 as a good dielectric. Its intrinsic
impedance is therefore approximated well by Eq. (62b), Chapter 12:

η2 =
√

µ0

ε′2

[
1 + j

1
2

ε′′2
ε′2

]
=

377√
5

[1 + j0.025]

The reflection coefficient encountered by the incident wave from region 1 is therefore

Γ =
η2 − η1

η2 + η1
=

(377/
√

5)[1 + j.025] − 377
(377/

√
5)[1 + j.025] + 377

=
(1 −

√
5) + j.025

(1 +
√

5) + j.025
= −0.383 + j0.011

The fraction of the incident power that is reflected is then |Γ|2 = 0.147, and thus the
fraction of the power that is transmitted into region 2 is 1 − |Γ|2 = 0.853. Still using the
good dielectric approximation, the attenuation coefficient in region 2 is found from Eq.
(60a), Chapter 12:

α
.=

ωε′′2
2

√
µ0

ε′2
= (2π × 107)(0.05 × 5 × 8.854 × 10−12)

377
2
√

5
= 2.34 × 10−2 Np/m

Now, the power that propagates into region 2 is expressed in terms of the incident power
through

< S2 > (z) = 5(1 − |Γ|2)e−2αz = 5(.853)e−2(2.34×10−2)z = 0.5 W/m2

in which the last equality indicates a factor of ten reduction from the incident power, as
occurs for a 10 dB loss. Solve for z to obtain

z =
ln(8.53)

2(2.34 × 10−2)
= 45.8 m

13.5. The region z < 0 is characterized by ε′r = µr = 1 and ε′′r = 0. The total E field here is given
as the sum of the two uniform plane waves, Es = 150e−j10z ax + (50� 20◦)ej10z ax V/m.
a) What is the operating frequency? In free space, β = k0 = 10 = ω/c = ω/3 × 108. Thus,

ω = 3 × 109 s−1, or f = ω/2π = 4.7 × 108 Hz.

b) Specify the intrinsic impedance of the region z > 0 that would provide the appropriate
reflected wave: Use

Γ =
Er

Einc
=

50ej20◦

150
=

1
3
ej20◦

= 0.31 + j0.11 =
η − η0

η + η0

2



13.5 (continued) Now

η = η0

(
1 + Γ
1 − Γ

)
= 377

(
1 + 0.31 + j0.11
1 − 0.31 − j0.31

)
= 691 + j177 Ω

c) At what value of z (−10 cm < z < 0) is the total electric field intensity a maximum
amplitude? We found the phase of the reflection coefficient to be φ = 20◦ = .349rad, and
we use

zmax =
−φ

2β
=

−.349
20

= −0.017 m = −1.7 cm

13.6. Region 1, z < 0, and region 2, z > 0, are described by the following parameters: ε′1 = 100
pF/m, µ1 = 25 µH/m, ε′′1 = 0, ε′2 = 200 pF/m, µ2 = 50 µH/m, and ε′′2/ε′2 = 0.5. If
E+

1 = 5e−α1z cos(4 × 109t − β1z)ax V/m, find:

a) α1: As ε′′1 = 0, there is no loss mechanism that is modeled (see Eq. (44), Chapter 12),
and so α1 = 0.

b) β1: Since region 1 is lossless, the phase constant for the uniform plane wave will be

β1 = ω
√

µ1ε′1 = (4 × 109)
√

(25 × 10−6)(100 × 10−12) = 200 rad/m

c) < S+
1 >: To find the power density, we need the intrinsic impedance of region 1, given by

η1 =
√

µ1

ε′1
=

√
25 × 10−6

100 × 10−12
= 500 ohms

Then the incident power density will be

< S+
1 >=

1
2η1

|E1|2 az =
52

2(500)
az = 25az mW/m2

d) < S−
1 >: To find the reflected power, we need the intrinsic impedance of region 2. This

is found using Eq. (48), Chapter 12:

η2 =
√

µ2

ε′2

1√
1 − j(ε′′2/ε′2)

=

√
50 × 10−6

200 × 10−12

1√
1 − j0.5

= 460 + j109 ohms

Then the reflection coefficient at the 1-2 boundary is

Γ =
η2 − η1

η2 + η1
=

460 + j109 − 500
460 + j109 + 500

= −0.028 + j0.117

The reflected power fraction is then |Γ|2 = 1.44 × 10−2.
Therefore < S−

1 >= − < S+
1 > |Γ|2 = −0.36az mW/m2.
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13.6e) < S+
2 >: We first need the attenuation coefficient in region 2. This is given by Eq. (44) in

Chapter 12, which in our case becomes

α2 = ω

√
µ2ε′2

2




√
1 +

(
ε′′2
ε′2

)2

− 1


1/2

= (4 × 109)
[
(50 × 10−6)(200 × 10−12)

2

]1/2 [√
1 + 0.25 − 1

]1/2
= 97.2 Np/m

Now

< S+
2 >=< S+

1 > (1 − |Γ|2) e−2α2z = 25(0.986)e−2(97.2)z az = 24.7e−194z az mW/m2

Note the approximately 1 cm penetration depth.

13.7. The semi-infinite regions z < 0 and z > 1 m are free space. For 0 < z < 1 m, ε′r = 4, µr = 1,
and ε′′r = 0. A uniform plane wave with ω = 4 × 108 rad/s is travelling in the az direction
toward the interface at z = 0.
a) Find the standing wave ratio in each of the three regions: First we find the phase constant

in the middle region,

β2 =
ω
√

ε′r
c

=
2(4 × 108)
3 × 108

= 2.67 rad/m

Then, with the middle layer thickness of 1 m, β2d = 2.67 rad. Also, the intrinsic
impedance of the middle layer is η2 = η0/

√
ε′r = η0/2. We now find the input impedance:

ηin = η2

[
η0 cos(β2d) + jη2 sin(β2d)
η2 cos(β2d) + jη0 sin(β2d)

]
=

377
2

[
2 cos(2.67) + j sin(2.67)
cos(2.67) + j2 sin(2.67)

]
= 231 + j141

Now, at the first interface,

Γ12 =
ηin − η0

ηin + η0
=

231 + j141 − 377
231 + j141 + 377

= −.176 + j.273 = .325 � 123◦

The standing wave ratio measured in region 1 is thus

s1 =
1 + |Γ12|
1 − |Γ12|

=
1 + 0.325
1 − 0.325

= 1.96

In region 2 the standing wave ratio is found by considering the reflection coefficient for
waves incident from region 2 on the second interface:

Γ23 =
η0 − η0/2
η0 + η0/2

=
1 − 1/2
1 + 1/2

=
1
3

Then

s2 =
1 + 1/3
1 − 1/3

= 2

Finally, s3 = 1, since no reflected waves exist in region 3.
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13.7b. Find the location of the maximum |E| for z < 0 that is nearest to z = 0. We note that the
phase of Γ12 is φ = 123◦ = 2.15 rad. Thus

zmax =
−φ

2β
=

−2.15
2(4/3)

= −.81 m

13.8. A wave starts at point a, propagates 100m through a lossy dielectric for which α = 0.5 Np/m,
reflects at normal incidence at a boundary at which Γ = 0.3 + j0.4, and then returns to point
a. Calculate the ratio of the final power to the incident power after this round trip: Final
power, Pf , and incident power, Pi, are related through

Pf = Pie
−2αL|Γ|2e−2αL ⇒ Pf

Pi
= |0.3 + j0.4|2e−4(0.5)100 = 3.5 × 10−88(!)

Try measuring that.

13.9. Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (µ = µ0, ε′′ = 0). A
uniform plane wave traveling in the az direction has a radian frequency of 3× 1010 rad/s. Its
wavelengths in the two regions are λ1 = 5 cm and λ2 = 3 cm. What percentage of the energy
incident on the boundary is
a) reflected; We first note that

ε′r1 =
(

2πc

λ1ω

)2

and ε′r2 =
(

2πc

λ2ω

)2

Therefore ε′r1/ε′r2 = (λ2/λ1)2. Then with µ = µ0 in both regions, we find

Γ =
η2 − η1

η2 + η1
=

η0

√
1/ε′r2 − η0

√
1/ε′r1

η0

√
1/ε′r2 + η0

√
1/ε′r1

=

√
ε′r1/ε′r2 − 1√
ε′r1/ε′r2 + 1

=
(λ2/λ1) − 1
(λ2/λ1) + 1

=
λ2 − λ1

λ2 + λ1
=

3 − 5
3 + 5

= −1
4

The fraction of the incident energy that is reflected is then |Γ|2 = 1/16 = 6.25 × 10−2.

b) transmitted? We use part a and find the transmitted fraction to be
1 − |Γ|2 = 15/16 = 0.938.

c) What is the standing wave ratio in region 1? Use

s =
1 + |Γ|
1 − |Γ| =

1 + 1/4
1 − 1/4

=
5
3

= 1.67
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13.10. In Fig. 13.1, let region 2 be free space, while µr1 = 1, ε′′r1 = 0, and ε′r1 is unknown. Find ε′r1 if
a) the amplitude of E−

1 is one-half that of E+
1 : Since region 2 is free space, the reflection

coefficient is

Γ =
|E−

1 |
|E+

1 |
=

η0 − η1

η0 + η1
=

η0 − η0/
√

ε′r1
η0 + η0/

√
ε′r1

=

√
ε′r1 − 1√
ε′r1 + 1

=
1
2

⇒ ε′r1 = 9

.

b) < S−
1 > is one-half of < S+

1 >: This time

|Γ|2 =

∣∣∣∣∣
√

ε′r1 − 1√
ε′r1 + 1

∣∣∣∣∣
2

=
1
2

⇒ ε′r1 = 34

c) |E1|min is one-half |E1|max: Use

|E1|max

|E1|min
= s =

1 + |Γ|
1 − |Γ| = 2 ⇒ |Γ| = Γ =

1
3

=

√
ε′r1 − 1√
ε′r1 + 1

⇒ ε′r1 = 4

13.11. A 150 MHz uniform plane wave in normally-incident from air onto a material whose intrinsic
impedance is unknown. Measurements yield a standing wave ratio of 3 and the appearance of
an electric field minimum at 0.3 wavelengths in front of the interface. Determine the impedance
of the unknown material: First, the field minimum is used to find the phase of the reflection
coefficient, where

zmin = − 1
2β

(φ + π) = −0.3λ ⇒ φ = 0.2π

where β = 2π/λ has been used. Next,

|Γ| =
s − 1
s + 1

=
3 − 1
3 + 1

=
1
2

So we now have
Γ = 0.5ej0.2π =

ηu − η0

ηu + η0

We solve for ηu to find
ηu = η0(1.70 + j1.33) = 641 + j501 Ω

13.12. A 50MHz uniform plane wave is normally incident from air onto the surface of a calm ocean.
For seawater, σ = 4 S/m, and ε′r = 78.
a) Determine the fractions of the incident power that are reflected and transmitted: First

we find the loss tangent:

σ

ωε′
=

4
2π(50 × 106)(78)(8.854 × 10−12)

= 18.4

This value is sufficiently greater than 1 to enable seawater to be considered a good con-
ductor at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), the intrinsic
impedance is ηs =

√
πfµ/σ(1 + j), and the reflection coefficient becomes

Γ =

√
πfµ/σ (1 + j) − η0√
πfµ/σ (1 + j) + η0

6



13.12 (continued) where
√

πfµ/σ =
√

π(50 × 106)(4π × 10−7)/4 = 7.0. The fraction of the power
reflected is

Pr

Pi
= |Γ|2 =

[
√

πfµ/σ − η0]2 + πfµ/σ

[
√

πfµ/σ + η0]2 + πfµ/σ
=

[7.0 − 377]2 + 49.0
[7.0 + 377]2 + 49.0

= 0.93

The transmitted fraction is then

Pt

Pi
= 1 − |Γ|2 = 1 − 0.93 = 0.07

b) Qualitatively, how will these answers change (if at all) as the frequency is increased?
Within the limits of our good conductor approximation (loss tangent greater than about
ten), the reflected power fraction, using the formula derived in part a, is found to decrease
with increasing frequency. The transmitted power fraction thus increases.

13.13. A right-circularly-polarized plane wave is normally incident from air onto a semi-infinite slab
of plexiglas (ε′r = 3.45, ε′′r = 0). Calculate the fractions of the incident power that are reflected
and transmitted. Also, describe the polarizations of the reflected and transmitted waves. First,
the impedance of the plexiglas will be η = η0/

√
3.45 = 203 Ω. Then

Γ =
203 − 377
203 + 377

= −0.30

The reflected power fraction is thus |Γ|2 = 0.09. The total electric field in the plane of
the interface must rotate in the same direction as the incident field, in order to continu-
ally satisfy the boundary condition of tangential electric field continuity across the interface.
Therefore, the reflected wave will have to be left circularly polarized in order to make this
happen. The transmitted power fraction is now 1− |Γ|2 = 0.91. The transmitted field will be
right circularly polarized (as the incident field) for the same reasons.

13.14. A left-circularly-polarized plane wave is normally-incident onto the surface of a perfect con-
ductor.
a) Construct the superposition of the incident and reflected waves in phasor form: Assume

positive z travel for the incident electric field. Then, with reflection coefficient, Γ = −1,
the incident and reflected fields will add to give the total field:

Etot = Ei + Er = E0(ax + jay)e−jβz − E0(ax + jay)e+jβz

= E0


(

e−jβz − ejβz
)︸ ︷︷ ︸

−2j sin(βz)

ax + j
(
e−jβz − ejβz

)︸ ︷︷ ︸
−2j sin(βz)

ay


 = 2E0 sin(βz) [ay − jax]

b) Determine the real instantaneous form of the result of part a:

E(z, t) = Re
{
Etote

jωt
}

= 2E0 sin(βz) [cos(ωt)ay + sin(ωt)ax]

c) Describe the wave that is formed: This is a standing wave exhibiting circular polarization
in time. At each location along the z axis, the field vector rotates clockwise in the xy
plane, and has amplitude (constant with time) given by 2E0 sin(βz).
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13.15. Consider these regions in which ε′′ = 0: region 1, z < 0, µ1 = 4µH/m and ε′1 = 10 pF/m;
region 2, 0 < z < 6 cm, µ2 = 2µH/m, ε′2 = 25 pF/m; region 3, z > 6 cm, µ3 = µ1 and ε′3 = ε′1.
a) What is the lowest frequency at which a uniform plane wave incident from region 1 onto

the boundary at z = 0 will have no reflection? This frequency gives the condition β2d = π,
where d = 6 cm, and β2 = ω

√
µ2ε′2 Therefore

β2d = π ⇒ ω =
π

(.06)
√

µ2ε′2
⇒ f =

1
0.12

√
(2 × 10−6)(25 × 10−12)

= 1.2 GHz

b) If f = 50 MHz, what will the standing wave ratio be in region 1? At the given frequency,
β2 = (2π×5×107)

√
(2 × 10−6)(25 × 10−12) = 2.22 rad/m. Thus β2d = 2.22(.06) = 0.133.

The intrinsic impedance of regions 1 and 3 is η1 = η3 =
√

(4 × 10−6)/(10−11) = 632 Ω.
The input impedance at the first interface is now

ηin = 283
[
632 cos(.133) + j283 sin(.133)
283 cos(.133) + j632 sin(.133)

]
= 589 − j138 = 605� − .23

The reflection coefficient is now

Γ =
ηin − η1

ηin + η1
=

589 − j138 − 632
589 − j138 + 632

= .12 � − 1.7

The standing wave ratio is now

s =
1 + |Γ|
1 − |Γ| =

1 + .12
1 − .12

= 1.27

13.16. A uniform plane wave in air is normally-incident onto a lossless dielectric plate of thickness
λ/8, and of intrinsic impedance η = 260 Ω. Determine the standing wave ratio in front of the
plate. Also find the fraction of the incident power that is transmitted to the other side of the
plate: With the a thickness of λ/8, we have βd = π/4, and so cos(βd) = sin(βd) = 1

√
2. The

input impedance thus becomes

ηin = 260
[
377 + j260
260 + j377

]
= 243 − j92 Ω

The reflection coefficient is then

Γ =
(243 − j92) − 377
(243 − j92) + 377

= −0.19 − j0.18 = 0.26 � − 2.4rad

Therefore
s =

1 + .26
1 − .26

= 1.7 and 1 − |Γ|2 = 1 − (.26)2 = 0.93
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13.17. Repeat Problem 13.16 for the cases in which the frequency is
a) doubled: If this is true, then d = λ/4, and thus ηin = (260)2/377 = 179. The reflection

coefficient becomes

Γ =
179 − 377
179 + 377

= −0.36 ⇒ s =
1 + .36
1 − .36

= 2.13

Then 1 − |Γ|2 = 1 − (.36)2 = 0.87.

b) quadrupled: Now, d = λ/2, and so we have a half-wave section surrounded by air. Trans-
mission will be total, and so s = 1 and 1 − |Γ|2 = 1.

13.18. A uniform plane wave is normally-incident onto a slab of glass (n = 1.45) whose back surface
is in contact with a perfect conductor. Determine the reflective phase shift at the front surface
of the glass if the glass thickness is: (a) λ/2; (b) λ/4; (c) λ/8.

With region 3 being a perfect conductor, η3 = 0, and Eq. (36) gives the input impedance
to the structure as ηin = jη2 tanβ
. The reflection coefficient is then

Γ =
ηin − η0

ηin + η0
=

jη2 tanβ
 − η0

jη2 tanβ
 + η0
=

η2
2 tan2 β
 − η2

0 + j2η0η2 tanβ


η2
2 tan2 β
 + η2

0

= Γr + jΓi

where the last equality occurs by multiplying the numerator and denominator of the
middle term by the complex conjugate of its denominator. The reflective phase is now

φ = tan−1

(
Γi

Γr

)
= tan−1

[
2η2η0 tanβ


η2
2 tan2 β
 − η2

0

]
= tan−1

[
(2.90) tanβ


tanβ
 − 2.10

]

where η2 = η0/1.45 has been used. We can now evaluate the phase shift for the three
given cases. First, when 
 = λ/2, β
 = π, and thus φ(λ/2) = 0. Next, when 
 = λ/4,
β
 = π/2, and

φ(λ/4) → tan−1 [2.90] = 71◦

as 
 → λ/4. Finally, when 
 = λ/8, β
 = π/4, and

φ(λ/8) = tan−1

[
2.90

1 − 2.10

]
= −69.2◦ (or 291◦)
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13.19. You are given four slabs of lossless dielectric, all with the same intrinsic impedance, η, known
to be different from that of free space. The thickness of each slab is λ/4, where λ is the
wavelength as measured in the slab material. The slabs are to be positioned parallel to one
another, and the combination lies in the path of a uniform plane wave, normally-incident. The
slabs are to be arranged such that the air spaces between them are either zero, one-quarter
wavelength, or one-half wavelength in thickness. Specify an arrangement of slabs and air
spaces such that
a) the wave is totally transmitted through the stack: In this case, we look for a combination

of half-wave sections. Let the inter-slab distances be d1, d2, and d3 (from left to right).
Two possibilities are i.) d1 = d2 = d3 = 0, thus creating a single section of thickness λ,
or ii.) d1 = d3 = 0, d2 = λ/2, thus yielding two half-wave sections separated by a half-
wavelength.

b) the stack presents the highest reflectivity to the incident wave: The best choice here
is to make d1 = d2 = d3 = λ/4. Thus every thickness is one-quarter wavelength. The
impedances transform as follows: First, the input impedance at the front surface of the last
slab (slab 4) is ηin,1 = η2/η0. We transform this back to the back surface of slab 3, moving
through a distance of λ/4 in free space: ηin,2 = η2

0/ηin,1 = η3
0/η2. We next transform this

impedance to the front surface of slab 3, producing ηin,3 = η2/ηin,2 = η4/η3
0 . We continue

in this manner until reaching the front surface of slab 1, where we find ηin,7 = η8/η7
0 .

Assuming η < η0, the ratio ηn/ηn−1
0 becomes smaller as n increases (as the number of

slabs increases). The reflection coefficient for waves incident on the front slab thus gets
close to unity, and approaches 1 as the number of slabs approaches infinity.

13.20. The 50MHz plane wave of Problem 13.12 is incident onto the ocean surface at an angle to the
normal of 60◦. Determine the fractions of the incident power that are reflected and transmitted
for
a) s polarization: To review Problem 12, we first we find the loss tangent:

σ

ωε′
=

4
2π(50 × 106)(78)(8.854 × 10−12)

= 18.4

This value is sufficiently greater than 1 to enable seawater to be considered a good con-
ductor at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), and with µ = µ0,
the intrinsic impedance is ηs =

√
πfµ/σ(1 + j) = 7.0(1 + j). Next we need the angle of

refraction, which means that we need to know the refractive index of seawater at 50MHz.
For a uniform plane wave in a good conductor, the phase constant is

β =
nsea ω

c

.=
√

πfµσ ⇒ nsea
.= c

√
µσ

4πf
= 26.8

Then, using Snell’s law, the angle of refraction is found:

sin θ2 =
nsea

n1
sin θ1 = 26.8 sin(60◦) ⇒ θ2 = 1.9◦

This angle is small enough so that cos θ2
.= 1. Therefore, for s polarization,

Γs
.=

ηs2 − ηs1

ηs2 + ηs1
=

7.0(1 + j) − 377/ cos 60◦

7.0(1 + j) + 377/ cos 60◦
= −0.98 + j0.018 = 0.98 � 179◦
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3.20a (continued) The fraction of the power reflected is now |Γs|2 = 0.96. The fraction transmitted
is then 0.04.

b) p polarization: Again, with the refracted angle close to zero, the relection coefficient for
p polarization is

Γp
.=

ηp2 − ηp1

ηp2 + ηp1
=

7.0(1 + j) − 377 cos 60◦

7.0(1 + j) + 377 cos 60◦
= −0.93 + j0.069 = 0.93 � 176◦

The fraction of the power reflected is now |Γp|2 = 0.86. The fraction transmitted is then
0.14.

13.21. A right-circularly polarized plane wave in air is incident at Brewster’s angle onto a semi-infinite
slab of plexiglas (ε′r = 3.45, ε′′r = 0, µ = µ0).
a) Determine the fractions of the incident power that are reflected and transmitted: In

plexiglas, Brewster’s angle is θB = θ1 = tan−1(ε′r2/ε′r1) = tan−1(
√

3.45) = 61.7◦. Then
the angle of refraction is θ2 = 90◦−θB (see Example 13.9), or θ2 = 28.3◦. With incidence
at Brewster’s angle, all p-polarized power will be transmitted — only s-polarized power
will be reflected. This is found through

Γs =
η2s − η1s

η2s + η1s
=

.614η0 − 2.11η0

.614η0 + 2.11η0
= −0.549

where η1s = η1 sec θ1 = η0 sec(61.7◦) = 2.11η0,
and η2s = η2 sec θ2 = (η0/

√
3.45) sec(28.3◦) = 0.614η0. Now, the reflected power fraction

is |Γ|2 = (−.549)2 = .302. Since the wave is circularly-polarized, the s-polarized compo-
nent represents one-half the total incident wave power, and so the fraction of the total
power that is reflected is .302/2 = 0.15, or 15%. The fraction of the incident power that
is transmitted is then the remainder, or 85%.

b) Describe the polarizations of the reflected and transmitted waves: Since all the p-polarized
component is transmitted, the reflected wave will be entirely s-polarized (linear). The
transmitted wave, while having all the incident p-polarized power, will have a reduced
s-component, and so this wave will be right-elliptically polarized.

13.22. A dielectric waveguide is shown in Fig. 13.16 with refractive indices as labeled. Incident light
enters the guide at angle φ from the front surface normal as shown. Once inside, the light
totally reflects at the upper n1 − n2 interface, where n1 > n2. All subsequent reflections from
the upper an lower boundaries will be total as well, and so the light is confined to the guide.
Express, in terms of n1 and n2, the maximum value of φ such that total confinement will
occur, with n0 = 1. The quantity sinφ is known as the numerical aperture of the guide.

From the illustration we see that φ1 maximizes when θ1 is at its minimum value. This minimum
will be the critical angle for the n1 − n2 interface, where sin θc = sin θ1 = n2/n1. Let the
refracted angle to the right of the vertical interface (not shown) be φ2, where n0 sinφ1 =
n1 sinφ2. Then we see that φ2 +θ1 = 90◦, and so sin θ1 = cos φ2. Now, the numerical aperture
becomes

sinφ1max =
n1

n0
sinφ2 = n1 cos θ1 = n1

√
1 − sin2 θ1 = n1

√
1 − (n2/n1)2 =

√
n2

1 − n2
2

Finally, φ1max = sin−1
(√

n2
1 − n2

2

)
is the numerical aperture angle.
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13.23. Suppose that φ1 in Fig. 13.16 is Brewster’s angle, and that θ1 is the critical angle. Find n0 in
terms of n1 and n2: With the incoming ray at Brewster’s angle, the refracted angle of this ray
(measured from the inside normal to the front surface) will be 90◦ − φ1. Therefore, φ1 = θ1,
and thus sinφ1 = sin θ1. Thus

sinφ1 =
n1√

n2
0 + n2

1

= sin θ1 =
n2

n1
⇒ n0 = (n1/n2)

√
n2

1 − n2
2

Alternatively, we could have used the result of Problem 13.22, in which it was found that
sinφ1 = (1/n0)

√
n2

1 − n2
2, which we then set equal to sin θ1 = n2/n1 to get the same result.

13.24. A Brewster prism is designed to pass p-polarized light without any reflective loss. The prism
of Fig. 13.17 is made of glass (n = 1.45), and is in air. Considering the light path shown,
determine the apex angle, α: With entrance and exit rays at Brewster’s angle (to eliminate
reflective loss), the interior ray must be horizontal, or parallel to the bottom surface of the
prism. From the geometry, the angle between the interior ray and the normal to the prism
surfaces that it intersects is α/2. Since this angle is also Brewster’s angle, we may write:

α = 2 sin−1

(
1√

1 + n2

)
= 2 sin−1

(
1√

1 + (1.45)2

)
= 1.21 rad = 69.2◦

13.25. In the Brewster prism of Fig. 13.17, determine for s-polarized light the fraction of the incident
power that is transmitted through the prism: We use Γs = (ηs2 − ηs1)/(ηs2 + ηs1), where

ηs2 =
η2

cos(θB2)
=

η2

n/
√

1 + n2
=

η0

n2

√
1 + n2

and
ηs1 =

η1

cos(θB1)
=

η1

1/
√

1 + n2
= η0

√
1 + n2

Thus, at the first interface, Γ = (1−n2)/(1+n2). At the second interface, Γ will be equal but
of opposite sign to the above value. The power transmission coefficient through each interface
is 1 − |Γ|2, so that for both interfaces, we have, with n = 1.45:

Ptr

Pinc
=

(
1 − |Γ|2

)2
=

[
1 −

(
n2 − 1
n2 + 1

)2
]2

= 0.76
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13.26. Show how a single block of glass can be used to turn a p-polarized beam of iight through 180◦,
with the light suffering, in principle, zero reflective loss. The light is incident from air, and
the returning beam (also in air) may be displaced sideways from the incident beam. Specify
all pertinent angles and use n = 1.45 for glass. More than one design is possible here.

The prism below is designed such that light enters at Brewster’s angle, and once inside, is
turned around using total reflection. Using the result of Example 13.9, we find that with
glass, θB = 55.4◦, which, by the geometry, is also the incident angle for total reflection at the
back of the prism. For this to work, the Brewster angle must be greater than or equal to the
critical angle. This is in fact the case, since θc = sin−1(n2/n1) = sin−1(1/1.45) = 43.6◦.

13.27. Using Eq. (79) in Chapter 12 as a starting point, determine the ratio of the group and phase
velocities of an electromagnetic wave in a good conductor. Assume conductivity does not vary
with frequency: In a good conductor:

β =
√

πfµσ =
√

ωµσ

2
→ dβ

dω
=

1
2

[ωµσ

2

]−1/2 µσ

2

Thus
dω

dβ
=

(
dβ

dω

)−1

= 2
√

2ω

µσ
= vg and vp =

ω

β
=

ω√
ωµσ/2

=
√

2ω

µσ

Therefore vg/vp = 2.
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13.28. Over a small wavelength range, the refractive index of a certain material varies approximately
linearly with wavelength as n(λ) .= na + nb(λ − λa), where na, nb, and λa are constants, and
where λ is the free space wavelength.

a) Show that d/dω = −(2πc/ω2)d/dλ: With λ as the free space wavelength, we use λ =
2πc/ω, from which dλ/dω = −2πc/ω2. Then d/dω = (dλ/dω) d/dλ = −(2πc/ω2) d/dλ.

b) Using β(λ) = 2πn/λ, determine the wavelength-dependent (or independent) group delay
over a unit distance: This will be

tg =
1
vg

=
dβ

dω
=

d

dω

[
2πn(λ)

λ

]
= −2πc

ω2

d

dλ

[
2π

λ
[na + nb(λ − λa)]

]

= −2πc

ω2

[
−2π

λ2
[na + nb(λ − λa)] +

2π

λ
nb

]

= − λ2

2πc

[
−2πna

λ2
+

2πnbλa

λ2

]
=

1
c
(na − nbλa) s/m

c) Determine β2 from your result of part b: β2 = d2β/dω2|ω0 . Since the part b result is
independent of wavelength (and of frequency), it follows that β2 = 0.

d) Discuss the implications of these results, if any, on pulse broadening: A wavelength-
independent group delay (leading to zero β2) means that there will simply be no pulse
broadening at all. All frequency components arrive simultaneously. This sort of thing
happens in most transparent materials – that is, there will be a certain wavelength, known
as the zero dispersion wavelength, around which the variation of n with λ is locally linear.
Transmitting pulses at this wavelength will result in no pulse broadening (to first order).

13.29. A T = 5 ps transform-limited pulse propagates in a dispersive channel for which β2 =
10 ps2/km. Over what distance will the pulse spread to twice its initial width? After prop-
agation, the width is T ′ =

√
T 2 + (∆τ)2 = 2T . Thus ∆τ =

√
3T , where ∆τ = β2z/T .

Therefore
β2z

T
=

√
3T or z =

√
3T 2

β2
=

√
3(5 ps)2

10 ps2/km
= 4.3 km

13.30. A T = 20 ps transform-limited pulse propagates through 10 km of a dispersive channel for
which β2 = 12 ps2/km. The pulse then propagates through a second 10 km channel for which
β2 = −12 ps2/km. Describe the pulse at the output of the second channel and give a physical
explanation for what happened.
Our theory of pulse spreading will allow for changes in β2 down the length of the channel. In
fact, we may write in general:

∆τ =
1
T

∫ L

0

β2(z) dz

Having β2 change sign at the midpoint, yields a zero ∆τ , and so the pulse emerges from the
output unchanged! Physically, the pulse acquires a positive linear chirp (frequency increases
with time over the pulse envelope) during the first half of the channel. When β2 switches sign,
the pulse begins to acquire a negative chirp in the second half, which, over an equal distance,
will completely eliminate the chirp acquired during the first half. The pulse, if originally
transform-limited at input, will emerge, again transform-limited, at its original width. More
generally, complete dispersion compensation is achieved using a two-segment channel when
β2L = −β′

2L
′, assuming dispersion terms of higher order than β2 do not exist.

14


